JIAO Xue, DONG Yuzhi, WANG Jingwen, et al. Establishment and Application of Rapid Detection Method for Polymyxin Resistance Gene mcr-1 Based on RPA-LFD Method[J]. Science and Technology of Food Industry, 2023, 44(18): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120034.
Citation: JIAO Xue, DONG Yuzhi, WANG Jingwen, et al. Establishment and Application of Rapid Detection Method for Polymyxin Resistance Gene mcr-1 Based on RPA-LFD Method[J]. Science and Technology of Food Industry, 2023, 44(18): 209−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120034.

Establishment and Application of Rapid Detection Method for Polymyxin Resistance Gene mcr-1 Based on RPA-LFD Method

More Information
  • Received Date: December 14, 2022
  • Available Online: July 17, 2023
  • Objective: To develop a rapid, efficient and visual method for the detection of bacterial colistin resistance gene mcr-1, so as to provide the basis and convenience for the development of its detection at the grassroots level. Methods: Using recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay, supplemented by a hand-held colloidal gold reader. According to the conserved sequence of the mcr-1 gene, a pair of specific RPA primers were designed and synthesized. Through the optimization of the reaction conditions and system, as well as the specificity test, sensitivity test, simulated food sample test and actual sample test, the RPA-LFD assay for visual and quantitative detection of bacterial colistin resistance gene mcr-1 was successfully established. Results: When the primer concentration was 400 nmol/L and the primer ratio was 1:1, the optimal reaction conditions of this method are Mg2+ concentration 14.0 mmol/L, reaction temperature 37 ℃ and reaction time 20 min. The sensitivity was good, the standard curve equation was y=0.117x+0.051, the quantification limit was 101~108 copies/μL, and the detection limit was 101 copies/μL, which was an order of magnitude lower than the PCR method and the detection result of the simulated sample was consistent with the PCR method. Carrying status of colistin resistance gene mcr-1 in each 15 pork samples, chicken samples, pig farm environmental samples, broiler farm environmental samples, Escherichia coli isolates and Enterobacter campylobacter isolates were analyzed by the established RPA-LFD assay. The detection rate of positive samples by RPA-LFD assay was consistent with that of conventional PCR method, and a total of 9 mcr-1 gene positive samples were detected. RPA-LFD quantitative analysis showed that the concentration of mcr-1 gene in positive samples was between 4.5×102~8.6×104 copies/µL. Conclition: The RPA-LFD detection method of the bacterial colistin resistance gene mcr-1 established in this study had strong specificity, high sensitivity, and simple operation, and could be widely used in grassroots inspections.
  • [1]
    SALOME N, MARKUS H, VINCENT P, et al. Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health?[J]. Drug Resistance Updates,2013,16(1−2).
    [2]
    PATERSON D. Resistance in gram-negative bacteria: Enterobacteriaceae[J]. American Journal of Medicine, 2006, 119: S20-S28.
    [3]
    陈愿, 张永安, 周洋. 噬菌体在水产养殖业中的研究进展[J]. 水产学报,2021,45(9):1605−1615. [CHEN Y, ZHANG Y A, ZHOU Y. Research progress of bacteriophage in aquaculture[J]. Journal of Fisheries of China,2021,45(9):1605−1615.

    CHEN Y, ZHANG Y A, ZHOU Y. Research progress of bacteriophage in aquaculture[J]. Journal of Fisheries of China, 2021, 45(9): 1605-1615.
    [4]
    李一鸣, 王少林. 肠杆菌科细菌耐药基因表达的遗传和环境调控[J]. 生物工程学报,2021,37(4):1092−1106. [LI Y M, WANG S L. The impact of genetic and environmental regulation on theexpression of antibiotic resistance genes in Enterobacteriaceae[J]. Chinese Journal of Biotechnology,2021,37(4):1092−1106. doi: 10.13345/j.cjb.200392

    LI Y M, WANG S L. The impact of genetic and environmental regulation on theexpression of antibiotic resistance genes in Enterobacteriaceae[J]. Chinese Journal of Biotechnology, 2021, 37(4): 1092-1106. doi: 10.13345/j.cjb.200392
    [5]
    WANG Y, ZHANG R, LI J, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production[J]. Nature microbiology, 2017, 2.
    [6]
    WANG X, WANG Y, ZHOU Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae[J]. Emerging Microbes & Infections,2018,7(1).
    [7]
    BOROWIAK M, BAUMANN B, FISHER J, et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011-2018) in Germany[J]. Frontiers in Microbiology,2020,11:80. doi: 10.3389/fmicb.2020.00080
    [8]
    孙赫, 张桉潮, 郭越, 等. 吉林省鸡源携带多黏菌素耐药基因mcr-1大肠杆菌的流行病学调查[J]. 中国兽医杂志,2020,56(9):68−73. [SUN H, ZHANG A C, GUO Y, et al. Epidemiological investigation of colistin resistance gene mcr-1 in chickens from Jilin province[J]. Chinese Journal of Veterinary Medicine,2020,56(9):68−73.

    SUN H, ZHANG A C, GUO Y, et al. Epidemiological Investigation of Colistin Resistance Gene mcr-1 in Chickens from Jilin Province[J]. Chinese Journal of Veterinary Medicine, 2020, 56(9): 68-73.
    [9]
    王新兴, 翟真真, 常维山, 等. 多粘菌素耐药基因mcr-1的研究进展[J]. 中国动物传染病学报,2020,28(2):110−114. [WANG X X, QU Z Z, CHANG W S, et al. Dvances in research on polymyxin resistence mechanism mcr-1[J]. Chinese Journal of Animal Infectious Diseases,2020,28(2):110−114.

    WANG X X, QU Z Z, CHANG W S, et al. Dvances in research on polymyxin resistence mechanism mcr-1[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(2): 110-114.
    [10]
    MICHAELl R M, LAURA F M, JAMES R, et al. Dissemination of the mcr-1 colistin resistance gene[J]. The Lancet Infectious Diseases,2016,16(3):144−145.
    [11]
    刘向君, 吕媛. 质粒介导的多黏菌素耐药基因mcr-1研究进展[J]. 中华微生物学和免疫学杂志,2018,38(4):305−312. [LIU X J, LÜ Y. Progress in plasmid-mediated colistin resistance gene mcr-1[J]. Chinese Journal of Microbiology and Immunology,2018,38(4):305−312.

    LIU X J, LV Y. Progress in plasmid-mediated colistin resistance gene mcr-1[J]. Chinese Journal of Microbiology and Immunology, 2018, 38(4): 305-312.
    [12]
    王齐晖, 刘学佳, 胡锦瑞, 等. 肠杆菌科细菌mcr-1基因筛查及其与多黏菌素耐药表型的相关性[J]. 中国医科大学学报,2018,47(8):713−716. [WANG Q H, LIU X J, HU J R, et al. Screening for the mcr-1 gene in the members of the Enterobacteriaceae and its correlation with colistin resistant phenotype[J]. Journal of China Medical University,2018,47(8):713−716.

    WANG Q H, LIU X J, HU J R, et al. Screening for the mcr-1 gene in the members of the Enterobacteriaceae and its correlation with colistin resistant phenotype[J]. Journal of China Medical University, 2018, 47(8): 713-716.
    [13]
    陆上, 毕颖敏, 杨洋, 等. 临床分离肠杆菌科细菌中 mcr-1 的筛查及其阳性菌株的药敏结果[J]. 中国感染与化疗杂志,2018,18(4):408−412. [LU S, BI Y M, YANG Y, et al. Distribution of mcr-1 gene among clinical isolates of Enterobacteriaceae and antimicrobial susceptibility profile of mcr-1 positive strains[J]. Chinese Journal of Infection and Chemotherapy,2018,18(4):408−412.

    LU S, BI Y M, YANG Y, et al. Distribution of mcr-1 gene among clinical isolates of Enterobacteriaceae and antimicrobial susceptibility profile of mcr-1 positive strains[J]. Chinese Journal of Infection and Chemotherapy, 2018, 18(4): 408-412.
    [14]
    郑效瑾, 吕东月, 俞全喜, 等. blaNDMmcr-1~mcr-5 基因在中国不同标本中的分布[J]. 中国校医,2022,36(1):21−25. [ZHENG X J, LV D Y, YU Q X, et al. Distribution of blaNDM and mcr-1~mcr-5 genes in different types of samples in China[J]. Chinese Journal of School Doctor,2022,36(1):21−25.

    ZHENG X J, LV D Y, YU Q X, et al. Distribution of blaNDM and mcr-1~mcr-5 genes in different types of samples in China[J]. Chinese Journal of School Doctor, 2022, 36(1): 21-25.
    [15]
    樊融. 中国不同来源的革兰阴性细菌mcr-1bla-(NDM)基因的筛选及分析[D]. 北京: 中国疾病预防控制中心, 2020

    FAN R. Retrospective screening and analysis of mcr-1 and bla-NDM in gram-negative bacteria in China[D]. Beijing: Chinese Center for Disease Control and Prevention, 2020.
    [16]
    陈莉. 粘菌素耐药基因(mcr-1-mcr-8)的流行病学调查及mcr-1传播机制的研究[D]. 扬州: 扬州大学, 2019

    CHEN L. Molecular epidemiology of mobile colistin resistance genes(mcr-1- mcr-8) and transmission mechanism of mcr-1 positive Escherichia coli[D]. Yangzhou: Yangzhou University, 2019.
    [17]
    屈素洁, 施开创, 尹彦文, 等. 超级细菌bla_(NDM-1)mcr-1基因双重TaqMan荧光定量PCR检测方法的建立[J]. 中国动物传染病学报,2020,28(5):23−30. [QU S J, SHI K C, YIN Y W, et al. Establishment of duplex taoman real-time PCR fordetection of bla_(NDM-1) and mcr-1 genes of superbug[J]. Chinese Journal of Animal Infectious Diseases,2020,28(5):23−30.

    QU S J, SHI K C, YIN Y W, et al. Establishment of duplex taoman real-time PCR fordetection of bla_(NDM-1) and mcr-1 genes of superbug[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(5): 23-30.
    [18]
    沈伟伟, 盛莹, 管雅雅, 等. 双重荧光定量PCR检测携带mcr-1基因的鼠伤寒沙门菌的建立与应用[J]. 中国卫生检验杂志,2020,30(12):1412−1415. [SHEN W W, SHENG Y, GUAN Y Y, et al. Establishment and application of double fluorescent quantitative PCR in detection of Salmonella typhimurium carrying mcr-1 gene[J]. Chinese Journal of Health Laboratory Technology,2020,30(12):1412−1415.

    [SHEN W W, SHENG Y, GUAN Y Y, et al. Establishment and application of double fluorescent quantitative PCR in detection of Salmonella typhimurium carrying mcr-1 gene[J]. Chinese Journal of Health Laboratory Technology, 2020, 30(12): 1412-1415. ]
    [19]
    张克旭, 滚双宝, 车勇良, 等. 耐药基因mcr-1bla_(NDM-1)的双重荧光定量PCR检测方法的建立[J]. 动物医学进展,2021,42(10):9−13. [ZHANG K X, GUN S B, CHE Y L, et al. Establishment of a duplex reatime PCR method for detecting drug resistance genes mcr-l and bla__(NDM-1)[J]. Progress in Veterinary Medicine,2021,42(10):9−13.

    ZHANG K X, GUN S B, CHE Y L, et al. Establishment of A Duplex Reatime PCR Method for Detecting Drug Resistance Genes mcr-l and bla NDM-1[J]. Progress In Veterinary Medicine, 2021, 42(10): 9-13.
    [20]
    YONGBING L, HAIBEI L, CHUNYAN C, et al. Profile of antibiotic resistance genes in the terminal tap water from the center area of Tianjin[J]. Asian Journal of Ecotoxicology,2021(2):195−202.
    [21]
    MIAO F, ZHANG J, LI N, et al. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus[J]. Frontiers in Microbiology,2019,10(1004):1−7.
    [22]
    LI J L, MA B, FANG J H, et al. Recombinase polymerase amplification (RPA) combined with lateral flow immunoassay for rapid detection of Salmonella in food[J]. Foods,2020,9(27):1−12.
    [23]
    CHEN K, MA B, LI J, et al. A rapid and sensitive europium nanoparticle-based lateral flow immunoassay combined with recombinase polymerase amplification for simultaneous detection of three food-borne pathogens[J]. International Journal of Environmental Research and Public Health,2021,18(9):4574. doi: 10.3390/ijerph18094574
    [24]
    SRISRATTAKARN A, PANPRU P, TIPPAYAWAT P, et al. Rapid detection of methicillin-resistant Staphylococcus aureus in positive blood-cultures by recombinase polymerase amplification combined with lateral flow strip[J]. PLoS One,2022,17(6):e0270686. doi: 10.1371/journal.pone.0270686
    [25]
    赵玉梅. 三种重要疫霉菌 LFD-RPA 快速检测技术研究[D]. 福州: 福建农林大学, 2020

    ZHAO Y M. Rapid detection of three main Phytophthora spp. using lateral flow dipstick-recombinase polymerase amplification assay[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
    [26]
    DAHEER R K, STEWART G, BOISSINOT M, et al. Recombinase polymerase amplification for diagnostic applications[J]. Clinical Chemistry,2016,62(7):947−958. doi: 10.1373/clinchem.2015.245829
    [27]
    邓王平, 洪清华, 徐斌, 等. 基于RPA-LFD的日本血吸虫循环核酸快速可视化检测方法的建立及初步评价[J]. 中国寄生虫学与寄生虫病杂志,2020,38(3):286−292. [DENG W P, HONG H Q, XU B, et al. Development and preliminary evaluation of a rapid visualization detection method for circulating nucleic acids of Schistosoma japonicum based on RPA-LFD[J]. Chinese Journal of Parasitology and Parasitic Diseases,2020,38(3):286−292.

    DENG W P, HONG H Q, XU B, et al. Development and preliminary evaluation of a rapid visualization detection method for circulating nucleic acids of Schistosoma japonicum based on RPA-LFD[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(3): 286-292.
    [28]
    蔡应奎, 刘新生, 张丽萍, 等. 猪嵴病毒重组酶聚合酶扩增结合侧流层析试纸条(RPA-LFD)快速诊断方法的建立与应用[J]. 中国兽医科学,2020,50(7):820−824. [CAI Y K, LIU X S, ZHANG L P, et al. Development and application of a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay for rapid diagnosis of porcine kobuvirus[J]. Veterinary Science in China,2020,50(7):820−824.

    CAI Y K, LIU X S, ZHANG L P, et al. Development and application of a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay for rapid diagnosis of porcine kobuvirus[J]. Veterinary Science in China, 2020, 50(7): 820-824.
    [29]
    于博, 李博宇, 赵博, 等. 布鲁氏菌RPA-LFD检测方法的建立[J]. 中国预防兽医学报,2019,41(12):1233−1237. [YU B, LI B Y, ZHAO B, et al. Establishment of RPA-LFD detection method for Brucella[J]. Chinese Journal of Preventive Veterinary Medicine,2019,41(12):1233−1237.

    YU B, LI B Y, ZHAO B, et al. Establishment of RPA-LFD detection method for Brucella[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(12): 1233-1237.
    [30]
    林彦星, 吴江, 赵现锋, 等. 非洲猪瘟病毒 LFD-RPA 快速检测方法的建立[J]. 中国兽医科学,2020,50(8):952−956. [LIN Y X, WU J, ZHAO X F, et al. Development of LFD-RPA assay for rapid detection of African swine fever virus[J]. Veterinary Science in China,2020,50(8):952−956.

    LIN Y X, WU J, ZHAO X F, et al. Development of LFD-RPA assay for rapid detection of African swine fever virus[J]. Veterinary Science in China, 2020, 50(8): 952-956.
    [31]
    JIN B, MA B, LI J, et al. Simultaneous detection of five foodborne pathogens using a mini automatic nucleic acid extractor combined with recombinase polymerase amplification and lateral flow immunoassay[J]. Microorganisms,2022,10(7):1352. doi: 10.3390/microorganisms10071352
    [32]
    LIU H, CAO R, XU W, et al. A cost-effective method for the rapid detection of chicken adulteration in meat using recombinase polymerase amplification combined with nucleic acid hybridization lateral flow strip[J]. Journal of Food Composition and Analysis,2022,111:104602. doi: 10.1016/j.jfca.2022.104602
    [33]
    LAI F Y, CHANG K C, CHANG C S, et al. Development of a rapid sex identification method for newborn pigeons using recombinase polymerase amplification and a lateral-flow dipstick on farm[J]. Animals,2022,12(21):2969. doi: 10.3390/ani12212969
    [34]
    HOLMES D S, QUIGLEY M. A rapid boiling method for the preparation of bacterial plasmids[J]. Analytical Biochemistry,1981,114(1):193−197. doi: 10.1016/0003-2697(81)90473-5
    [35]
    车勇良, 陈秋勇, 陈如敬, 等. 多黏菌素耐药基因mcr-1重组酶介导扩增方法的建立及应用[J]. 动物医学进展,2022,43(8):46−49. [CHE Y L, CHEN Q Y, CHEN J R, et al. Development and application of recombinase-aided amplification assay (RAA) for detecting polymyxin-resistant mcr-1 gene[J]. Progress in Veterinary Medicine,2022,43(8):46−49.

    CHE Y L, CHEN Q Y, CHEN J R, et al. Development and application of recombinase-aided amplification assay (RAA) for detecting polymyxin-resistant mcr-1 gene[J]. Progress In Veterinary Medicine, 2022, 43(8): 46-49.
    [36]
    于灵芝, 陶凌云, 魏晓锋. 可视化核酸检测技术RPA-LFD的研究和应用进展[J]. 实验动物与比较医学,2021,41(6):547. [YU L Z, TAO L Y, WEI X F. Research and application progress in visualized rpa-lfd nucleic acid detection technology[J]. Laboratory Animal and Comparative Medicine,2021,41(6):547.

    YU L Z, TAO L Y, WEI X F. Research and application progress in visualized rpa-lfd nucleic acid detection technology[J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 547.
    [37]
    张闪闪, 何斌, 李书光, 等. 可视化RPA-LFD技术快速检测猪链球菌[J]. 畜牧兽医学报,2022,53(2):538−547. [ZHANG S S, HE B, LI S G, et al. Rapid detection of Streptococcus suis with visual RPA-LFD technology[J]. Acta Veterinaria et Zootechnica Sinica,2022,53(2):538−547.

    ZHANG S S, HE B, LI S G, et al. Rapid detection of Streptococcus suis with visual RPA-LFD technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 538-547.
  • Related Articles

    [1]SHI Qilong, LIU Jing, ZHAO Ya. Numerical Simulation of Protein Denaturation of Scallop Adductors during Heating Based on Temperature Distribution and Water Status Distribution[J]. Science and Technology of Food Industry, 2025, 46(5): 239-247. DOI: 10.13386/j.issn1002-0306.2024030367
    [2]MA Yonghui, LIU Guishan, HE Jianguo, KANG Ningbo, CHEN Shoutao, YIN Junjie, LIU Mengqi, JIA Lili. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9-17. DOI: 10.13386/j.issn1002-0306.2021110311
    [3]WANG Ya-juan, ZHANG Feng-juan, TENG Jian-wen, WEI Bao-yao, WANG Qin-zhi. Numerical Simulation of Microwave Vacuum Drying Kinetics of Carrot Chips[J]. Science and Technology of Food Industry, 2020, 41(18): 17-23. DOI: 10.13386/j.issn1002-0306.2020.18.003
    [4]ZHU Kai, LI Yan-jie, WANG Ya-bo, WANG Jin-shan. Internal Water Phase Changes and Surface Moisture Loss Kinetics of Broad Bean Seeds during Dehydration[J]. Science and Technology of Food Industry, 2020, 41(17): 51-57. DOI: 10.13386/j.issn1002-0306.2020.17.009
    [5]LI Chun-hui, ZHANG Min, AI Wen-ting, SHAO Ting-ting, LIU Wei, ZHU Sai-sai. Effects of different temperature field responses on postharvest storage quality of Cucurbita pepo L.[J]. Science and Technology of Food Industry, 2018, 39(2): 272-277,284. DOI: 10.13386/j.issn1002-0306.2018.02.051
    [6]DU Jing, LIU Tao, XU Ze, LI Chun-mei. Numberical simulation and experiment verification study on low temperature spray-drying of persimmon pulp[J]. Science and Technology of Food Industry, 2015, (21): 237-241. DOI: 10.13386/j.issn1002-0306.2015.21.041
    [7]LI Jing, JIN Guang-yuan, ZHANG Min, CUI Zheng-wei, ZHONG Jian-xun. Numerical study on spout fluidization dynamics in pulsed- spout microwave- vacuum dryer[J]. Science and Technology of Food Industry, 2015, (11): 79-83. DOI: 10.13386/j.issn1002-0306.2015.11.008
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 王宇昂,刘晓鹏,宋少云,曹梅丽,张永林. 基于多耦合物理场的“香菇-热风”互作过程分析. 武汉轻工大学学报. 2024(06): 94-102 .
    3. 张瑞,李国伟,刘扬,兰海鹏,张永成,范修文. 坚果干燥技术研究现状分析及展望. 新疆农机化. 2023(02): 34-38+48 .
    4. 肖更生,林可为,沈乔眉,刘东杰,马路凯,王锋. 岭南特色水果干燥加工技术研究进展. 轻工学报. 2023(04): 1-10 .
    5. 刘烨,陈鹏枭,朱文学,樊梦珂,吴建章,蒋萌蒙. 农产品干燥过程数值模拟研究现状及进展. 食品与发酵工业. 2023(16): 331-339 .
    6. 王雪妃,王田,许铭强,张艳艳,承春平,杜雨桐,陈恺,李焕荣. 赛买提鲜杏整果热风干燥特性及水分迁移规律研究. 食品与发酵工业. 2023(20): 91-99 .
    7. 王泽林,刘芳,耿文广,高玲,张大鹏,李子淳,张潇. 苹果切片对流干燥过程热湿影响因素模拟. 煤气与热力. 2022(12): 14-19 .
    8. 李佳欢,杨斌,任佳媛,金文松,孙淑静,胡开辉. 热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响. 菌物学报. 2021(12): 3304-3319 .
    9. 蒋华彬,白洁,张小飞,李经伟,李玉美,郭宏,彭义交. 气流膨化过程中马铃薯方便粥水分变化动力学模型及品质变化分析. 食品科学. 2021(23): 137-144 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return