ZHENG Yiqi, ZHANG Anqiang, ZHANG Xiaojun, et al. Optimization of Ultrasonic-Assisted Extraction of Polysaccharides from Polyporus umbellatus Sclerotium by Response Surface Methodology and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(16): 255−263. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110343.
Citation: ZHENG Yiqi, ZHANG Anqiang, ZHANG Xiaojun, et al. Optimization of Ultrasonic-Assisted Extraction of Polysaccharides from Polyporus umbellatus Sclerotium by Response Surface Methodology and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(16): 255−263. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110343.

Optimization of Ultrasonic-Assisted Extraction of Polysaccharides from Polyporus umbellatus Sclerotium by Response Surface Methodology and Antioxidant Activity

More Information
  • Received Date: November 30, 2022
  • Available Online: June 18, 2023
  • To promote extraction efficiency of bioactive polysaccharides from sclerotium of Polyporus umbellatus, ultrasonic-assisted extraction was applied to extract polysaccharides from P. umbellatus sclerotium. The effects of extraction time, ultrasonic power, extraction temperature and liquid-to-material ratio on the yield of polysaccharide were investigated by combining single factor experiments and response surface optimization, and the optimal extraction parameters were also determined. Meanwhile, antioxidant activities were evaluated by DPPH free radical scavenging ability and reducing power test. The results showed that the yield of polysaccharides from sclerotia of P. umbellatus was significantly correlated to the interaction between extraction temperature and ultrasonic power, extraction temperature and liquid-to-material ratio, ultrasonic power and liquid-to-material ratio, liquid-to-material ratio and extraction time. The optimum extraction parameters were extraction temperature 72.0 ℃, extraction power 300 W, extraction time 65 min and liquid-solid ratio 22 mL/g, and the maximum yield was 2.47%±0.03%. PUPF30, PUPF60 and PUPF80 were obtained from polysaccharide extracts by graded ethanol precipitation. Their polysaccharide contents were respectively 39.99%, 58.60% and 50.35%, and the protein contents were respectively 25.80%, 14.42% and 25.54%. Within the tested dose range, PUPF30, PUPF60 and PUPF80 showed the highest DPPH scavenging rate of 50.63%, 83.95%, 87.48%, respectively, and the highest reduction power of 0.828, 1.433, 1.525, respectively. The ultrasonic-assisted extraction optimized by response surface methodology was preferable for effective extraction and preparation of bioactive polysaccharides from sclerotia of P. umbellatu. This study would lay a foundation for the further development and utilization of polysaccharides from sclerotia of P. umbellatus.
  • [1]
    赖戈娜, 贾文玉, 罗思婉, 等. 猪苓多糖的PMP柱前衍生化-HPLC指纹图谱研究[J]. 中国药房,2020,31(7):788−793. [LAI G N, JIA W Y, LUO S W, et al. Study on PMP pre-column derivatization-HPLC fingerprint of Polyporus polysaccharide[J]. China Pharmacy,2020,31(7):788−793. doi: 10.6039/j.issn.1001-0408.2020.07.05

    LAI G N, JIA W Y, LUO S W, et al. Study on PMP pre-column derivatization-HPLC fingerprint of Polyporus polysaccharide[J]. China Pharmacy, 2020, 31(7): 788-793. doi: 10.6039/j.issn.1001-0408.2020.07.05
    [2]
    国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020

    State Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China[M]. Beijing: China Medical Science Press, 2020.
    [3]
    宋瑞琦, 南铁贵, 袁媛, 等. 不同产地猪苓多糖含量及猪苓多糖中的单糖组成研究[J]. 中国中药杂志,2019,44(17):3608−3614. [SONG R Q, NAN T G, YUAN Y, et al. Study on polysaccharide content and monosaccharide composition of Polyporus umbellatus from different production areas[J]. China Journal of Chinese Materia Medica,2019,44(17):3608−3614. doi: 10.19540/j.cnki.cjcmm.20190701.103

    SONG R Q, NAN T G, YUAN Y, et al. Study on polysaccharide content and monosaccharide composition of Polyporus umbellatus from different production areas[J]. China Journal of Chinese Materia Medica, 2019, 44(17): 3608-3614. doi: 10.19540/j.cnki.cjcmm.20190701.103
    [4]
    黄青, 李丽媛, 刘晴晴, 等. 灵芝多糖和猪苓多糖及其复方的免疫调节作用研究进展[J]. 食品科学,2020,41(17):275−282. [HUANG Q, LI L Y, LIU Q Q, et al. Advances in immunoregulation effects of Ganoderma lucidum polysaccharide and/or Polyporus umbellatus polysaccharide[J]. Food Science,2020,41(17):275−282. doi: 10.7506/spkx1002-6630-20190813-149

    HUANG Q, LI L Y, LIU Q Q, et al. Advances in immunoregulation effects of Ganoderma lucidum polysaccharide and/or Polyporus umbellatus polysaccharide[J]. Food Science, 2020, 41(17): 275-282. doi: 10.7506/spkx1002-6630-20190813-149
    [5]
    LIU G K, YANG T X, WANG J R. Polysaccharides from Polyporus umbellatus: A review on their extraction, modification, structure, and bioactivities[J]. International Journal of Biological Macromolecules,2021,189:124−134. doi: 10.1016/j.ijbiomac.2021.08.101
    [6]
    LI H L, YAN Z, XIONG Q P, et al. Renoprotective effect and mechanism of polysaccharide from Polyporus umbellatus sclerotia on renal fibrosis[J]. Carbohydrate Polymers,2019,212:1−10. doi: 10.1016/j.carbpol.2019.02.026
    [7]
    GUO Z H, ZANG Y J, ZHANG L J. The efficacy of Polyporus umbellatus polysaccharide in treating hepatitis B in China[J]. Progress in Molecular Biology and Translational Science,2019,163:329−360.
    [8]
    WU H, LIANG J, CHENG Y, et al. Radio- and chemoprotective effects of Zhu-Ling Mushroom (Polyporus umbellatus) in human cultured cells and in mice[J]. Toxicology Letters,2011,205:S37.
    [9]
    GAO X, LI X, MU J, et al. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide[J]. International Journal of Biological Macromolecules,2020,152:605−615. doi: 10.1016/j.ijbiomac.2020.02.199
    [10]
    姜浩, 孙涛, 姚皓昱, 等. 食用真菌多糖的研究进展[J]. 食品工业科技,2022,43(12):447−456. [JIANG H, SUN T, YAO H Y, et al. Research progress of edible fungal polysaccharides[J]. Science and Technology of Food Industry,2022,43(12):447−456.

    JIANG H, SUN T, YAO H Y, et al. Research progress of edible fungal polysaccharides[J]. Science and Technology of Food Industry, 2022, 43(12): 447−456.
    [11]
    SINGLA M, SIT N. Application of ultrasound in combination with other technologies in food processing: A review[J]. Ultrasonics Sonochemistry,2021,73:105506. doi: 10.1016/j.ultsonch.2021.105506
    [12]
    WANG K J, GUO G T, CHENG J X, et al. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity[J]. International Journal of Biological Macromolecules,2021,191:1038−1045. doi: 10.1016/j.ijbiomac.2021.09.174
    [13]
    HU X T, XU F R, LI J L, et al. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility[J]. Food Chemistry,2022,374:131636. doi: 10.1016/j.foodchem.2021.131636
    [14]
    PEREIRA L M S, MILAN T M, TAPIA-BLÁCIDO D R. Using response surface methodology (RSM) to optimize 2G bioethanol production: A review[J]. Biomass and Bioenergy,2021,151:106166. doi: 10.1016/j.biombioe.2021.106166
    [15]
    ANRAKU M, GEBICKI J M, IOHARA D, et al. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies[J]. Carbohydrate Polymers,2018,199:141−149. doi: 10.1016/j.carbpol.2018.07.016
    [16]
    白瑞斌, 马铭, 王燕萍, 等. Box-Behnken响应面法优化猪苓多糖的提取工艺[J]. 西北药学杂志,2019,34(2):163−167. [BAI R B, MA M, WANG Y P, et al. Optimization of processing parameters for the extraction of polysaccharides from the sclerotia of Polyporus umbellatus (Pers.) Fries by Box-Behnken response surface methodology[J]. Northwest Pharmaceutical Journal,2019,34(2):163−167. doi: 10.3969/j.issn.1004-2407.2019.02.005

    BAI R B, MA M, WANG Y P, et al. Optimization of processing parameters for the extraction of polysaccharides from the sclerotia of Polyporus umbellatus (Pers. ) Fries by Box-Behnken response surface methodology[J]. Northwest Pharmaceutical Journal, 2019, 34(2): 163-167. doi: 10.3969/j.issn.1004-2407.2019.02.005
    [17]
    武爽, 白明健, 朱谋, 等. 不同提取方式对灵芝多糖含量及生物活性的影响研究[J]. 中国处方药,2022,20(4):20−24. [WU S, BAI M J, ZHU M, et al. Study on the effect of different extraction methods on the content and biological activity of Ganoderma lucidum polysaccharide[J]. Journal of China Prescription Drug,2022,20(4):20−24. doi: 10.3969/j.issn.1671-945X.2022.04.009

    WU S, BAI M J, ZHU M, et al. Study on the effect of different extraction methods on the content and biological activity of Ganoderma lucidum polysaccharide[J]. Journal of China Prescription Drug, 2022, 20(4): 20-24. doi: 10.3969/j.issn.1671-945X.2022.04.009
    [18]
    SAWCZUK R, KARPINSKA J, FILIPOWSKA D, et al. Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate[J]. Food Chemistry,2022,368:130745. doi: 10.1016/j.foodchem.2021.130745
    [19]
    周春晖, 唐璐, 范瑞, 等. 灵芝多糖功能饮料的研发及体外抗氧化活性分析[J]. 保鲜与加工,2021,21(11):64−71. [ZHOU C H, TANG L, FAN R, et al. Development and in vitro antioxidant activity analysis of Ganoderma lucidum polysaccharide functional beverage[J]. Storage and Process,2021,21(11):64−71. doi: 10.3969/j.issn.1009-6221.2021.11.010

    ZHOU C H, TANG L, FAN R, et al. Development and in vitro antioxidant activity analysis of Ganoderma lucidum polysaccharide functional beverage[J]. Storage and Process, 2021, 21(11): 64-71. doi: 10.3969/j.issn.1009-6221.2021.11.010
    [20]
    GUO X, LIU S, WANG Z, et al. Ultrasonic-assisted extraction of polysaccharide from Dendrobium officinale: Kinetics, thermodynamics and optimization[J]. Biochemical Engineering Journal,2022,177:108227. doi: 10.1016/j.bej.2021.108227
    [21]
    WANG Y, LIU J, LIU X, et al. Kinetic modeling of the ultrasonic-assisted extraction of polysaccharide from Nostoc commune and physicochemical properties analysis[J]. International Journal of Biological Macromolecules,2019,128:421−428. doi: 10.1016/j.ijbiomac.2018.12.247
    [22]
    PENG K, QIN F G F, JIANG R, et al. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis[J]. Ultrasonics Sonochemistry,2020,69:105253. doi: 10.1016/j.ultsonch.2020.105253
    [23]
    WU H, ZHOU C, PU Z, et al. Effect of low-frequency ultrasonic field at different power on the dynamics of a single bubble near a rigid wall[J]. Ultrasonics Sonochemistry,2019,58:104704. doi: 10.1016/j.ultsonch.2019.104704
    [24]
    YI C, LU Q, WANG Y, et al. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation[J]. Ultrasonics Sonochemistry,2018,43:156−165. doi: 10.1016/j.ultsonch.2018.01.013
    [25]
    CUI R, ZHU F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications[J]. Trends in Food Science & Technology,2021,107:491−508.
    [26]
    GU J, ZHANG H, ZHANG J, et al. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L.[J]. Carbohydrate Polymers,2020,246:116595. doi: 10.1016/j.carbpol.2020.116595
    [27]
    LIU Y Y, SUN Y, LI H L, et al. Optimization of ultrasonic extraction of polysaccharides from Flammulina velutipes residue and its protective effect against heavy metal toxicity[J]. Industrial Crops and Products,2022,187:115422. doi: 10.1016/j.indcrop.2022.115422
    [28]
    SARFARAZI M, JAFARI S M, RAJABZADEH G, et al. Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water[J]. LWT,2019,114:108428. doi: 10.1016/j.lwt.2019.108428
    [29]
    MIAO J N, SHI W, ZHANG J Q, et al. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities[J]. International Journal of Biological Macromolecules,2020,155:393−402. doi: 10.1016/j.ijbiomac.2020.03.183
    [30]
    FAVIER L, SIMION A, HLIHOR R M, et al. Intensification of the photodegradation efficiency of an emergent water pollutant through process conditions optimization by means of response surface methodology[J]. Journal of Environmental Management,2023,328:116928. doi: 10.1016/j.jenvman.2022.116928
    [31]
    ZHAO Z Y, BERMUDEZ S C, ILYAS A, et al. Optimization of negatively charged polysulfone membranes for concentration and purification of extracellular polysaccharides from Arthrospira platensis using the response surface methodology[J]. Separation and Purification Technology,2020,252:117385. doi: 10.1016/j.seppur.2020.117385
    [32]
    ZHOU S, HUANG G, CHEN G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food Chemistry,2021,361:130089. doi: 10.1016/j.foodchem.2021.130089
    [33]
    景晨茜. 硒化乳酸菌胞外多糖结构及抗氧化性研究[D]. 晋中: 山西农业大学, 2021

    JIANG C Q. Study on structure and antioxidant activity of extracellular polysaccharide of selenium lactic acid bacteria[D]. Jinzhong: Shanxi Agricultural University, 2021.
    [34]
    MA Y Q, XIU W Y, WANG X, et al. Structural characterization and in vitro antioxidant and hypoglycemic activities of degraded polysaccharides from sweet corncob[J]. Journal of Cereal Science,2022,108:103579. doi: 10.1016/j.jcs.2022.103579
    [35]
    CHEN Y J, LIN Q L, WANG J Q, et al. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies[J]. International Journal of Biological Macromolecules,2023,224:958−971. doi: 10.1016/j.ijbiomac.2022.10.181
    [36]
    张小琴, 吴中宝, 杜小琴, 等. 半仿生-酶法优化铁皮石斛多糖的提取工艺及其抗氧化性研究[J]. 化学研究与应用,2022,34(10):2558−2564. [ZHANG X Q, WU Z B, DU X Q, et al. Optimization of extraction process and antioxidant of polysaccharides from Dendrobium officinale by semi bionic enzymatic methodology[J]. Chemical Research and Application,2022,34(10):2558−2564.

    ZHANG X Q, WU Z B, DU X Q, et al. Optimization of extraction process and antioxidant of polysaccharides from Dendrobium officinale by semi bionic enzymatic methodology[J]. Chemical Research and Application, 2022, 34(10): 2558-2564.
    [37]
    邱晓月, 景永帅, 李朋月, 等. 祁白芷多糖脱色工艺优化及抗氧化活性研究[J]. 食品安全质量检测学报,2022,13(18):6074−6081. [QIU X Y, JING Y S, LI P Y, et al. Study on optimization of decolorization process and antioxidant activity of polysaccharide from Angelicae dahurica[J]. Journal of Food Safety and Quality,2022,13(18):6074−6081. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218037

    QIU X Y, JING Y S, LI P Y, et al. Study on optimization of decolorization process and antioxidant activity of polysaccharide from Angelicae dahurica[J]. Journal of Food Safety and Quality, 2022, 13(18): 6074-6081. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218037
    [38]
    DUAN G L, YU X B. Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia[J]. International Journal of Biological Macromolecules,2019,137:1112−1120. doi: 10.1016/j.ijbiomac.2019.06.177
    [39]
    YARLEY O P N, KOJO A B, ZHOU C S, et al. Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides[J]. International Journal of Biological Macromolecules,2021,183:2262−2271. doi: 10.1016/j.ijbiomac.2021.05.181
  • Cited by

    Periodical cited type(1)

    1. 高紫珊,杨意,李军,谢镇蔚,萧雅泳,敬思群,华军利,康会茹,肖志平,杨柳斌. 马蹄三部位生物活性初筛. 中国果菜. 2024(05): 40-47 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (183) PDF downloads (15) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return