Citation: | ZHANG Mengyu, PENG Jiayi, WEI Jinyuan, et al. Application of Droplet Microfluidic Technology Combined with Nucleic Acid Amplification in the Detection of Foodborne Pathogens[J]. Science and Technology of Food Industry, 2023, 44(18): 484−491. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110323. |
[1] |
姚帮本, 闫超, 姚丽, 等. 食源性致病菌快速检测方法研究进展[J]. 分析测试学报,2021,40(5):617−627. [YAO B B, YAN C, YAO L, et al. Advance on rapid detection of foodborne pathogenic bacteria[J]. Journal of Instrumental Analysis,2021,40(5):617−627.
YAO B B, YAN C, YAO L, et al. Advance on rapid detection of foodborne pathogenic bacteria[J]. Journal of Instrumental Analysis, 2021, 40(5): 617-627
|
[2] |
KANT K A, MOHAMMAD S A, DAVE V P, et al. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens[J]. Biotechnology Advances,2018,36(4):1003−1024. doi: 10.1016/j.biotechadv.2018.03.002
|
[3] |
UMESHA S, MANUKUMAR H M. Advanced molecular diagnostic techniques for detection of food-borne pathogens; Current applications and future challenges[J]. Critical Reviews in Food Science & Nutrition,2018,58(1):84−104.
|
[4] |
冯波, 谢文佳, 张晓光, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科技,2022,47(11):290−296. [FENG B, XIE W J, ZHANG X G, et al. Research progress on rapid detection technology of foodborne pathogens[J]. Food Science and Technology,2022,47(11):290−296.
FENG B, XIE W J, ZHANG X G, et al. Research progress on rapid detection technology of foodborne pathogens[J]. Food Science and Technology, 2022, 47(11): 290-296
|
[5] |
SAMIWI E, TABRIZIAN M, HOORFAR M. A review of digital microfluidics as portable platforms for lab-on a-chip applications[J]. Lab on A Chip,2016,16(13):2376. doi: 10.1039/C6LC00387G
|
[6] |
林炳承, 秦建华. 图解微流控芯片实验室[M]. 北京: 科学出版社, 2008: 258−265
LIN B C, QIN J H. Illustration of a microfluidic chip lab[M]. Beijing: Science Press, 2008: 258−265
|
[7] |
RAJAPAKSHA P, ELBOURNE A, GANGADOO S, et al. A review of methods for the detection of pathogenic microorganisms[J]. The Analyst,2019,144(2):396−411. doi: 10.1039/C8AN01488D
|
[8] |
ZHANG J, YAN S, YUAN D, et al. Fundamentals and applications of inertial microfluidics: A review[J]. Lab Chip,2016,16(1):10−34. doi: 10.1039/C5LC01159K
|
[9] |
MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing[J]. Sensors and Actuators B:Chemical,1990,1(1-6):244−248. doi: 10.1016/0925-4005(90)80209-I
|
[10] |
BAREA J S, LEE J, KANG D K. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology[J]. Micromachines,2019,10(6):412. doi: 10.3390/mi10060412
|
[11] |
涂然, 李世新, 李昊霓, 等. 液滴微流控技术在微生物工程菌株选育中的应用进展[J]. 合成生物学,2022,3(21):2096−8280. [TU R, LI S X, LI H N, et al. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains[J]. Synthetic Biology Journal,2022,3(21):2096−8280.
TU R, LI S X, LI H N, et al. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains[J]. Synthetic Biology Journal, 2022, 3(21): 2096-8280
|
[12] |
郑杰. 基于数字微流控芯片的液滴生成驱动及检测技术研究[D]. 重庆: 重庆理工大学, 2021
ZHENG J, Research on droplet generation drive and detection technology based on digital microfluidic chip[D]. Chongqing: Chongqing University of Technology, 2021
|
[13] |
李安一, 吕雪飞, 邓玉林, 等. 基于微流控芯片的核酸提取技术研究进展[J]. 分析试验室,2021,40(7):761−771. [LI A Y, LV X F, DENG Y L, et al. Progress of nucleic acid extraction techniques based on microfluidic chips[J]. Chinese Journal of Analysis Laboratory,2021,40(7):761−771.
LI A Y, LV X F, DENG Y L, et al. Progress of nucleic acid extraction techniques based on microfluidic chips[J]. Chinese Journal of Analysis Laboratory: 2021, 40(7): 761-771
|
[14] |
闫嘉航, 赵磊, 申少斐, 等. 液滴微流控技术在生物医学中的应用进展[J]. 分析化学,2016,44(4):562−568. [YAN J H, ZHAO L, SHEN S F, et al. Application progress of droplet-based microfluidics in biomedicine[J]. Chinese Journal of Analytical Chemistry,2016,44(4):562−568.
YAN J H, ZHAO L, SHEN S F, et al. Application progress of droplet-based microfluidics in biomedicine[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 562-568
|
[15] |
LEI S W, CHEN S, ZHONG Q P. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. International Journal of Biological Macromolecules,2021,184(4):750−759.
|
[16] |
SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie International Edition,2003,42(7):768−72. doi: 10.1002/anie.200390203
|
[17] |
HASSAN S U, ZHANG X, NIU X. Droplet-based microfluidics: formation, detection and analytical characterization[J]. Crimson Publishers Wings to the Research, 2019, 774
|
[18] |
任春艳, 马圆圆, 王景冉, 等. 微流控芯片设计和应用[J]. 实验技术与管理,2018,35(10):84−87. [REN C Y, MA Y Y, WANG J R, et al. Design and application of microfluidic chips[J]. Experimental Technology and Management,2018,35(10):84−87.
REN C Y, MA Y Y, WANG J R, et al. Design and application of microfluidic chips[J]. Experimental Technology and Management, 2018, 35(10): 84-87
|
[19] |
郭肖杰. 液滴微流控技术在微生物分离分析中的应用[D]. 合肥: 中国科学技术大学, 2016
GUO X J. The application of droplet microfluidic in microorganism separation and analysis[D]. Hefei: University of Science and Technology of China, 2016
|
[20] |
张若剑, 刘俊. 微流控纸芯片专利技术综述[J]. 科技视界,2018(24):198−199. [ZHANG R J, LIU J. Microfluidic paper chip patent technology overview[J]. Science & Technology Vision,2018(24):198−199.
ZHANG R J, LIU J. Microfluidic paper chip patent technology overview[J]. Science & Technology Vision, 2018(24): 198-199
|
[21] |
李露, 杨金易, 徐振林, 等. 纸基微流控技术及其在食品安全检测中的研究进展[J]. 分析测试学报,2021,40(8):1235−1245. [LI L, YANG J Y, XU Z L, et al. Application advances of paper-based microfluidic analytical devices in food safety inspection[J]. Journal of Instrumental Analysis,2021,40(8):1235−1245.
LI L, YANG J Y, XU Z L, et al. Application advances of paper-based microfluidic analytical devices in food safety inspection[J]. Journal of Instrumental Analysis, 2021, 40(8): 1235-1245
|
[22] |
贾志舰. 微流控芯片加工和试样引入技术的研究[D]. 杭州: 浙江大学, 2005
JIA Z J. Studies on fabrication and sample introduction techniques for microfluidic chips[D]. Hangzhou: ZheJiang University, 2005
|
[23] |
MAO X L, HUANG T J. Microfluidic diagnostics for the developing world[J]. Lab on A Chip,2012,12(8):1412−1416. doi: 10.1039/c2lc90022j
|
[24] |
周文超. 多通道微流控芯片的光探测及系统集成化方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014
ZHOU W C. Study on optical detection and integration in microfluidic chip with multi-channel cell[D]. Changchun: Changchun Institute of Optics (Fine Mechanics and Physics Chinese Academy of Sciences), 2014
|
[25] |
陈琛. 核酸等温扩增的集成化微流控芯片研究[D]. 武汉: 华中科技大学, 2017
CHEN C. Fully integrated loop-mediated isothermal amplification microdevices for nucleic acid detection[D]. Wuhan: Huazhong university of science& technology, 2017
|
[26] |
邹晶晶, 黎柱均, 刘云帆, 等. 集成式微流控液滴数字化等温扩增用于尿路感染细菌快速检测[J]. 分析化学,2022,50(8):1158−1167. [ZOU J J, LI Z Y, LIU Y F, et al. Integrated microfluidic droplet digital isothermal amplification enabled rapid detection of urinary tract infection bacteri[J]. Chinese Journal of Analytical Chemistry,2022,50(8):1158−1167.
ZOU J J, LI Z Y, LIU Y F, et al. Integrated microfluidic droplet digital isothermal amplification enabled rapid detection of urinary tract infection bacteri[J]. Chinese Journal of Analytical Chemistry. 2022, 50(8): 1158-1167
|
[27] |
李楠, 徐友春, 程京. 便携式全集成核酸分析系统技术综述[J]. 中国生物医学工程学报,2022,41(5):602−613. [LI N, XU Y C, CHENG J. Review of the portable fully integrated nucleic acid analysis system[J]. Chinese Journal of Biomedical Engineering,2022,41(5):602−613. doi: 10.3969/j.issn.0258-8021.2022.05.009
LI N, XU Y C, CHENG J. Review of the portable fully integrated nucleic acid analysis system[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 602-613. doi: 10.3969/j.issn.0258-8021.2022.05.009
|
[28] |
王哲, 雷舒文, 段林洁, 等. 数字PCR应用研究进展[J]. 顺德职业技术学院学报,2020,18(1):1−4,11. [WANG Z, LEI S W, DUAN L J, et al. On the current research of digital PCR application[J]. Journal of Shunde Polytechnic,2020,18(1):1−4,11.
WANG Z, LEI S W, DUAN L J, et al. On the current research of digital PCR application[J]. Journal of Shunde Polytechnic, 2020, 18(01): 1-4, 11
|
[29] |
李春勇. 数字PCR技术原理及应用[J]. 生物技术世界,2014(11):10−13. [LI C Y. Principle and application of digital PCR technology[J]. Biotech World,2014(11):10−13.
LI C Y. Principle and application of digital PCR technology[J]. Biotech World, 2014(11): 10-13
|
[30] |
SYKES P J, NEOH S H, et al. Quantitation of targets for PCR by use of limiting dilution[J]. BioTechniques,1992,13(3):444−449.
|
[31] |
李智杰, 刘占悝, 李健友, 等. 数字PCR技术研究进展[J]. 特产研究,2019,41(1):120−123. [LI Z J, LI Z L, LI J Y, et al. Research progress of digital PCR technology[J]. Special Wild Economic Animal and Plant Research,2019,41(1):120−123.
LI Z J, LI Z L, LI J Y, et al. Research progress of digital PCR technology [J]. Special Wild Economic Animal and Plant Research, 2019, 41(1): 120-123
|
[32] |
黄瑾, 梁涛波, 许恒毅. 数字PCR在生物学检测中应用的研究进展[J]. 生命科学,2021,33(2):255−264. [HUANG J, LIANG T B, XU H Y. Research progress of application of digital PCR in biological detection[J]. Chinese Bulletin of Life Sciences,2021,33(2):255−264.
HUANG J, LIANG T B, XU H Y. Research progress of application of digital PCR in biological detection[J]. Chinese Bulletin of Life Sciences, 2021, 33(2): 255-264
|
[33] |
赵新, 兰青阔, 陈锐, 等. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌[J]. 食品与生物技术学报,2017,36(3):315−321. [ZHAO X, LAN Q K, CHEN R, et al. Rapid detection of Salmonellla spp. in edible fungi by droplet digital PCR[J]. Journal of Food Science and Biotechnology,2017,36(3):315−321.
ZHAO X, LAN Q K, CHEN R, et al. Rapid Detection of Salmonellla spp.in Edible Fungi by Droplet Digital PCR[J]. Journal of Food Science and Biotechnology, 2017, 36(3): 315-321
|
[34] |
赵丽青, 方佩佩, 唐静, 等. 数字PCR定量检测食品中单核细胞增生李斯特氏菌方法的研究[J]. 食品安全质量检测学报,2017,8(11):4133−4138. [ZHAO L Q, FANG P P, TANG J, et al. Detection of Listeria monocytogenes in foods by droplet digital PCR[J]. Journal of Food Safety & Quality,2017,8(11):4133−4138. doi: 10.3969/j.issn.2095-0381.2017.11.009
ZHAO L Q, FANG P P, TANG J, et al. Detection of Listeria monocytogenes in foods by droplet digital PCR[J]. Journal of Food Safety & Quality, 2017, 8(11): 4133-4138 doi: 10.3969/j.issn.2095-0381.2017.11.009
|
[35] |
BIAN X J, JING F X, LI G, et al. A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes[J]. Biosensors & bioelectronics,2015,74:770−777.
|
[36] |
邓雪蕾, 张苑怡, 袁浩钧, 等. 液滴数字聚合酶链式反应芯片及其在致病菌检测中的应用[J]. 分析测试学报,2017,36(10):1191−1196. [DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection[J]. Journal of Instrumental Analysis,2017,36(10):1191−1196.
DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection[J]. Journal of Instrumental Analysis, 2017, 36(10): 1191-1196
|
[37] |
方佩佩, 赵丽青, 马云, 等. 副溶血性弧菌微滴数字PCR定量方法的建立[J]. 食品工业科技,2018,39(19):252−257. [FANG P P, ZHAO L Q, MA Y, et al. Establishment of digital PCR assay for detection of Vibrio parahemolyticus[J]. Science and Technology of Food Industry,2018,39(19):252−257.
FANG P P, ZHAO L Q, MA Y, et al. Establishment of Digital PCR Assay for Detection of Vibrio parahemolyticus[J]. Science and Technology of Food Industry, 2018, 39(19): 252-257
|
[38] |
LEI S W, GU X K, ZHONG Q P, et al. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell[J]. Food Control,2020,114:107207. doi: 10.1016/j.foodcont.2020.107207
|
[39] |
NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):E63. doi: 10.1093/nar/28.12.e63
|
[40] |
MEI X A, TLCD E, XIONG X A, et al. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip[J]. Food Control,2022,136:108824. doi: 10.1016/j.foodcont.2022.108824
|
[41] |
TAN Y L, WANG T, HE J, et al. Droplet microfluidic-based loop-mediated isothermal amplification (dLAMP) for simultaneous quantification of multiple targets[J]. Star Protocols,2022,3(2):101335. doi: 10.1016/j.xpro.2022.101335
|
[42] |
YUAN H, CHAO Y C, SHUM H C. Droplet and microchamber-based digital loop-mediated isothermal amplification (dLAMP)[J]. Small,2020,16(9):1904469. doi: 10.1002/smll.201904469
|
[43] |
王珍, 贺磊, 肖英平, 等. 微流控芯片恒温扩增技术快速检测米饭中的蜡样芽孢杆菌[J]. 浙江大学学报(农业与生命科学版),2021,47(2):193−202. [WANG Z, HE L, XIAO Y P, et al. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2021,47(2):193−202.
WANG Z, HE L, XIAO Y P, et al. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2021, 47(2): 193-202
|
[44] |
TAO Y, YUN J, WANG J, et al. High-performance detection of Mycobacterium bovis in milk using digital LAMP[J]. Food Chemistry,2020,327:126945. doi: 10.1016/j.foodchem.2020.126945
|
[45] |
SAYAD A A, IBRAHIM F, UDDIN S M, et al. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection[J]. Sensors and Actuators: B. Chemical,2016,227:600−609. doi: 10.1016/j.snb.2015.10.116
|
[46] |
鞠鹤鹏, 戴菁, 谢逸欣, 等. LAMP微流控芯片快速检测三种食源性致病菌[J]. 解放军预防医学杂志,2018,36(3):309−313. [JU H P, DAI J, XIE Y X, et al. Quick detection of three food-borne pathogens by LAMP microfluidic chip[J]. Journal of Preventive Medicine of Chinese People's Liberation Army,2018,36(3):309−313.
JU H P, DAI J, XIE Y X, et al. Quick detection of three food-borne pathogens by LAMP microfluidic chip[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2018, 36(3): 309-313
|
[47] |
PIEPENBURG O, WILLIAM C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. Plos Biology,2006,4(7):1115−1121.
|
[48] |
杨健, 侯婷婷, 佐兆杭, 等. 牛乳中蜡样芽孢杆菌荧光定量PCR检测方法的建立及验证[J]. 中国生物制品学杂志,2019,32(3):324−327,332. [YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk[J]. Chinese Journal of Biologicals,2019,32(3):324−327,332.
YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk[J]. Chinese Journal of Biologicals, 2019, 32(3): 324-327, 332
|
[49] |
秦雪, 付世骞, 杨鑫焱, 等. 重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用[J]. 食品工业科技,2021,42(20):449−455. [QIN X, FU S Q, YANG X Y, et al. Application of recombinase polymerase amplification in detection of foodborne pathogen[J]. Science and Technology of Food Industry,2021,42(20):449−455.
QIN X, FU S Q, YANG X Y, et al. Application of recombinase polymerase amplification in detection of foodborne pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449-455
|
[50] |
LI J, MACDONALD J, STETTEN F V. Correction: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst,2020,145(5):1950−1960. doi: 10.1039/C9AN90127B
|
[51] |
YIN J X, ZOU Z Y, HU Z M, et al. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens[J]. Lab on A Chip,2020,20(5):979−986. doi: 10.1039/C9LC01143A
|
[52] |
CRANNELL Z A, ROHRMAN B, RICHARDS-KORTUM R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat[J]. PLoS One,2017,9(11):112146.
|
[53] |
CUI J Q, LIU F X, PARK H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection[J]. Biosensors & Bioelectronics,2022,202:114019.
|
[54] |
DENG H M, GAO Z Q. Bioanalytical applications of isothermal nucleic acid amplification techniques[J]. Analytica Chimica Acta,2015,853:30−45. doi: 10.1016/j.aca.2014.09.037
|
[55] |
YIN J X, SUO Y J, ZOU Z Y, et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification[J]. Lab on A Chip,2019,19(17):2769−2785. doi: 10.1039/C9LC00389D
|
[56] |
高雯暄, 甘芝霖, 陈爱亮, 等. 核酸技术在食源性致病菌检测中的研究进展[J]. 食品安全质量检测学报,2020,11(24):9440−9450. [GAO W X, GAN Z L, CHEN A L, et al. Research progresses of nucleic acid technologies in the testing of food-borne pathogens[J]. Journal of Food Safety & Quality,2020,11(24):9440−9450.
GAO W X, GAN Z L, CHEN A L, et al. Research progresses of nucleic acid technologies in the testing of food-borne pathogens[J]. Journal of Food Safety & Quality, 2020, 11(24): 9440-9450
|
[57] |
SCHULER F, SCHWEMMER F, TROTTER M, et al. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA[J]. Lab on A Chip,2015,15(13):2759−66. doi: 10.1039/C5LC00291E
|
[58] |
CHOI G, JUNG J H, PARK B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on A Chip,2016,16(12):2309−2316. doi: 10.1039/C6LC00329J
|
[59] |
KERSTING S, RAUSCH V, BIER FF, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens[J]. Mikrochimica Acta,2014,181(13-14):1715−1723. doi: 10.1007/s00604-014-1198-5
|
[60] |
施奕, 徐昌平, 余蓓蓓, 等. 重组酶聚合酶扩增技术研究进展[J]. 病毒学报,2020,36(3):522−532. [SHI Y, XU C P, YU B B. Research progress in recombinase polymerase amplification (RPA)[J]. Chinese Journal of Virology,2020,36(3):522−532.
SHI Y, XU C P, YU B B. Research progress in recombinase polymerase amplification (RPA)[J]. Chinese Journal of Virology, 2020, 36(3): 522-532
|
[61] |
WANG M, YANG J J, GAI Z T, et al. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk[J]. International Journal of Food Microbiology,2017,266:251−256.
|
[62] |
YANG J, ZHANG N, LV J, et al. Comparing the performance of conventional PCR, RTQ-PCR, and droplet digital PCR assays in detection of Shigella[J]. Molecular and Cellular Probes,2020,51(3):101531.
|
[63] |
周巍, 李月华, 孙勇, 等. 微滴式数字PCR技术定量检测发酵乳中金黄色葡萄球菌[J]. 食品科学,2017,38(16):287−291. [ZHOU W, LI Y H, SUN Y, et al. Quantitative detection of Staphylococcus aureus in yogurt by droplet digital PCR assay[J]. Food Science,2017,38(16):287−291.
ZHOU W, LI Y H, SUN Y, et al. Quantitative detection of Staphylococcus aureus in yogurt by droplet digital PCR assay[J]. Food Science, 2017, 38(16): 287-291
|
[64] |
张明明, 肖剑, 林秀敏, 等. 多重微滴数字PCR同时定量检测三种食源性致病菌DNA拷贝数[J]. 农业生物技术学报,2022,30(3):606−618. [ZHANG M M, XIAO J, LIN X M, et al. Simultaneous quantification method of DNA copy number for three food-borne pathogens by multiplex droplet digital PCR[J]. Journal of Agricultural Biotechnology,2022,30(3):606−618.
ZHANG M M, XIAO J, LIN X M, et al. Simultaneous quantification method of DNA copy number for three food-borne pathogens by multiplex droplet digital PCR[J]. Journal of Agricultural Biotechnology, 2022, 30(3): 606-618
|
[65] |
NGUYEN H V, NGUYEN V D, LEE E Y, et al. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample[J]. Biosensors & Bioelectrinics,2019,136:132−139.
|
[66] |
宋娜, 刘朝阳, 李梦蓝, 等. 微流控芯片环介导恒温扩增技术快速检测8种肠道致病菌[J]. 国际检验医学杂志,2022,43(12):1425−1429. [SONG N, LIU C Y, LI M L, et al. Rapid detection of eight enteric pathogenic bacteria by isothermal amplification with microfluidic chip loop-mediated isothermal amplification[J]. International Journal of Laboratory Medicine,2022,43(12):1425−1429.
SONG N, LIU C Y, LI M L, et al. Rapid detection of eight enteric pathogenic bacteria by isothermal amplification with microfluidic chip loop-mediated isothermal amplification[J]. International Journal of Laboratory Medicine, 2022, 43(12): 1425-1429
|
[67] |
范一灵, 王淑娟, 李琼琼, 等. 重组酶聚合酶扩增检测产志贺毒素大肠埃希菌的微流控芯片技术[J]. 食品科学,2021,42(10):297−304. [FAN Y L, WANG S J, LI X X, et al. Rapid detection of shiga toxin-producing Escherichia coli by recombinase polymerase amplification combined with centrifugal compact disc microfluidic chip[J]. Food Science,2021,42(10):297−304.
FAN Y L, WANG S J, LI X X, et al. Rapid detection of shiga toxin-producing Escherichia coli by recombinase polymerase amplification combined with centrifugal compact disc microfluidic chip [J]. Food Science, 2021, 42(10): 297-304
|
1. |
王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 .
![]() | |
2. |
李天昊,位绍文,毛伟健,姜秀兰,薛彦华,丁洪发,盖凌云,程凡升,徐海忠. 三种酶前处理对香蕉酵素理化性质、生物活性及感官的影响. 食品工业科技. 2024(07): 86-92 .
![]() | |
3. |
白海军,庞惟俏,张智慧,王颖. 藜麦—蓝靛果复合汁发酵工艺及其上清液抗氧化与抗疲劳作用研究. 食品与机械. 2024(07): 148-154 .
![]() | |
4. |
陈雨欣,杨峰山,付海燕,宋新宇,刘春光. 食用植物酵素发酵过程中主要成分与功能研究进展. 中国农学通报. 2024(24): 143-150 .
![]() | |
5. |
孙茂成,王颖地,费鹏,昂媛,周铁莉,杨柳. 植物酵素的发酵微生物、加工技术及潜在生理功能. 中国调味品. 2024(11): 200-204 .
![]() | |
6. |
张智慧,庞惟俏,徐炳政,王颖,王佳,佐兆杭,孙维,徐开媛,李思楠. 藜麦和蓝靛果发酵菌株的筛选及复合发酵工艺的优化. 食品工业科技. 2024(24): 204-213 .
![]() | |
7. |
刘倩,袁越,张杰,赵瑞丽,赵黎明. 不同菌种发酵对诺丽果酵素的抗氧化性及风味物质的影响. 食品工业科技. 2023(04): 129-137 .
![]() | |
8. |
马天颖,蔡俊. 植物乳杆菌发酵马齿苋陈皮工艺优化及发酵液抗氧化活性分析. 食品研究与开发. 2023(08): 143-148 .
![]() | |
9. |
王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
![]() | |
10. |
田文静,武亚帅,程雪华,马长路. 柿子酵素发酵过程中活性成分及其抗氧化性能的研究. 北京农业职业学院学报. 2023(04): 59-66 .
![]() | |
11. |
韩怀磊,李文,王陶,贺羽,杨太平,袁珍虎,石相弘. 枯草芽孢杆菌发酵复配饲料的抗氧化活性研究. 饲料研究. 2023(12): 71-76 .
![]() | |
12. |
李昕阳,王淑敏,冷悦,陆珠,王旭,王欢,陈长宝. 蜜环菌液体培养基配方优选及其活性成分和抗氧化活性研究. 食品安全质量检测学报. 2023(19): 272-279 .
![]() | |
13. |
吕铭守,高亦昕,石彦国,刘琳琳,孙冰玉,朱秀清. 响应面法优化杂豆酸豆乳发酵工艺及体外消化分析. 食品工业科技. 2022(10): 238-245 .
![]() | |
14. |
王帅,宋奇,范影,冯超. 桑葚酵素发酵过程中理化指标及抗氧化活性的变化. 中国酿造. 2022(11): 84-88 .
![]() |