ZHANG Mengyu, PENG Jiayi, WEI Jinyuan, et al. Application of Droplet Microfluidic Technology Combined with Nucleic Acid Amplification in the Detection of Foodborne Pathogens[J]. Science and Technology of Food Industry, 2023, 44(18): 484−491. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110323.
Citation: ZHANG Mengyu, PENG Jiayi, WEI Jinyuan, et al. Application of Droplet Microfluidic Technology Combined with Nucleic Acid Amplification in the Detection of Foodborne Pathogens[J]. Science and Technology of Food Industry, 2023, 44(18): 484−491. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110323.

Application of Droplet Microfluidic Technology Combined with Nucleic Acid Amplification in the Detection of Foodborne Pathogens

More Information
  • Received Date: November 29, 2022
  • Available Online: July 12, 2023
  • Foodborne pathogen is an important factor affecting food safety. With the biotechnology development and the improved requirements for food safety, the detection methods of foodborne pathogens are constantly updated and improved. By microfluidic technology, the processes of sample pretreatment, separation and detection are integrated on a tiny chip, and a variety of functions are completed. As an important branch, droplet microfluidic technology can be used for high-throughput detection with the dispersed microdroplets formed by two insoluble liquids. In this paper, according to the different ways of nucleic acid amplification, the characteristics of droplet microfluidic-digital polymerase chain reaction, droplet microfluidic-digital loop-mediated isothermal amplification, and droplet microfluidic-digital recombinase polymerase amplification are compared and summarized. The applications of these methods in the detections of foodborne pathogens are also presented. In addition, the future developments of these technologies are prospected. The intelligent, continuous, precise and miniaturized rapid detections of foodborne pathogens are realized by droplet microfluidic technology combined with digital nucleic acid amplification. This paper would provide references for the development of the technology in the field of rapid detection of foodborne pathogens.
  • [1]
    姚帮本, 闫超, 姚丽, 等. 食源性致病菌快速检测方法研究进展[J]. 分析测试学报,2021,40(5):617−627. [YAO B B, YAN C, YAO L, et al. Advance on rapid detection of foodborne pathogenic bacteria[J]. Journal of Instrumental Analysis,2021,40(5):617−627.

    YAO B B, YAN C, YAO L, et al. Advance on rapid detection of foodborne pathogenic bacteria[J]. Journal of Instrumental Analysis, 2021, 40(5): 617-627
    [2]
    KANT K A, MOHAMMAD S A, DAVE V P, et al. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens[J]. Biotechnology Advances,2018,36(4):1003−1024. doi: 10.1016/j.biotechadv.2018.03.002
    [3]
    UMESHA S, MANUKUMAR H M. Advanced molecular diagnostic techniques for detection of food-borne pathogens; Current applications and future challenges[J]. Critical Reviews in Food Science & Nutrition,2018,58(1):84−104.
    [4]
    冯波, 谢文佳, 张晓光, 等. 食源性致病菌快速检测技术研究进展[J]. 食品科技,2022,47(11):290−296. [FENG B, XIE W J, ZHANG X G, et al. Research progress on rapid detection technology of foodborne pathogens[J]. Food Science and Technology,2022,47(11):290−296.

    FENG B, XIE W J, ZHANG X G, et al. Research progress on rapid detection technology of foodborne pathogens[J]. Food Science and Technology, 2022, 47(11): 290-296
    [5]
    SAMIWI E, TABRIZIAN M, HOORFAR M. A review of digital microfluidics as portable platforms for lab-on a-chip applications[J]. Lab on A Chip,2016,16(13):2376. doi: 10.1039/C6LC00387G
    [6]
    林炳承, 秦建华. 图解微流控芯片实验室[M]. 北京: 科学出版社, 2008: 258−265

    LIN B C, QIN J H. Illustration of a microfluidic chip lab[M]. Beijing: Science Press, 2008: 258−265
    [7]
    RAJAPAKSHA P, ELBOURNE A, GANGADOO S, et al. A review of methods for the detection of pathogenic microorganisms[J]. The Analyst,2019,144(2):396−411. doi: 10.1039/C8AN01488D
    [8]
    ZHANG J, YAN S, YUAN D, et al. Fundamentals and applications of inertial microfluidics: A review[J]. Lab Chip,2016,16(1):10−34. doi: 10.1039/C5LC01159K
    [9]
    MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing[J]. Sensors and Actuators B:Chemical,1990,1(1-6):244−248. doi: 10.1016/0925-4005(90)80209-I
    [10]
    BAREA J S, LEE J, KANG D K. Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology[J]. Micromachines,2019,10(6):412. doi: 10.3390/mi10060412
    [11]
    涂然, 李世新, 李昊霓, 等. 液滴微流控技术在微生物工程菌株选育中的应用进展[J]. 合成生物学,2022,3(21):2096−8280. [TU R, LI S X, LI H N, et al. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains[J]. Synthetic Biology Journal,2022,3(21):2096−8280.

    TU R, LI S X, LI H N, et al. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains[J]. Synthetic Biology Journal, 2022, 3(21): 2096-8280
    [12]
    郑杰. 基于数字微流控芯片的液滴生成驱动及检测技术研究[D]. 重庆: 重庆理工大学, 2021

    ZHENG J, Research on droplet generation drive and detection technology based on digital microfluidic chip[D]. Chongqing: Chongqing University of Technology, 2021
    [13]
    李安一, 吕雪飞, 邓玉林, 等. 基于微流控芯片的核酸提取技术研究进展[J]. 分析试验室,2021,40(7):761−771. [LI A Y, LV X F, DENG Y L, et al. Progress of nucleic acid extraction techniques based on microfluidic chips[J]. Chinese Journal of Analysis Laboratory,2021,40(7):761−771.

    LI A Y, LV X F, DENG Y L, et al. Progress of nucleic acid extraction techniques based on microfluidic chips[J]. Chinese Journal of Analysis Laboratory: 2021, 40(7): 761-771
    [14]
    闫嘉航, 赵磊, 申少斐, 等. 液滴微流控技术在生物医学中的应用进展[J]. 分析化学,2016,44(4):562−568. [YAN J H, ZHAO L, SHEN S F, et al. Application progress of droplet-based microfluidics in biomedicine[J]. Chinese Journal of Analytical Chemistry,2016,44(4):562−568.

    YAN J H, ZHAO L, SHEN S F, et al. Application progress of droplet-based microfluidics in biomedicine[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 562-568
    [15]
    LEI S W, CHEN S, ZHONG Q P. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. International Journal of Biological Macromolecules,2021,184(4):750−759.
    [16]
    SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie International Edition,2003,42(7):768−72. doi: 10.1002/anie.200390203
    [17]
    HASSAN S U, ZHANG X, NIU X. Droplet-based microfluidics: formation, detection and analytical characterization[J]. Crimson Publishers Wings to the Research, 2019, 774
    [18]
    任春艳, 马圆圆, 王景冉, 等. 微流控芯片设计和应用[J]. 实验技术与管理,2018,35(10):84−87. [REN C Y, MA Y Y, WANG J R, et al. Design and application of microfluidic chips[J]. Experimental Technology and Management,2018,35(10):84−87.

    REN C Y, MA Y Y, WANG J R, et al. Design and application of microfluidic chips[J]. Experimental Technology and Management, 2018, 35(10): 84-87
    [19]
    郭肖杰. 液滴微流控技术在微生物分离分析中的应用[D]. 合肥: 中国科学技术大学, 2016

    GUO X J. The application of droplet microfluidic in microorganism separation and analysis[D]. Hefei: University of Science and Technology of China, 2016
    [20]
    张若剑, 刘俊. 微流控纸芯片专利技术综述[J]. 科技视界,2018(24):198−199. [ZHANG R J, LIU J. Microfluidic paper chip patent technology overview[J]. Science & Technology Vision,2018(24):198−199.

    ZHANG R J, LIU J. Microfluidic paper chip patent technology overview[J]. Science & Technology Vision, 2018(24): 198-199
    [21]
    李露, 杨金易, 徐振林, 等. 纸基微流控技术及其在食品安全检测中的研究进展[J]. 分析测试学报,2021,40(8):1235−1245. [LI L, YANG J Y, XU Z L, et al. Application advances of paper-based microfluidic analytical devices in food safety inspection[J]. Journal of Instrumental Analysis,2021,40(8):1235−1245.

    LI L, YANG J Y, XU Z L, et al. Application advances of paper-based microfluidic analytical devices in food safety inspection[J]. Journal of Instrumental Analysis, 2021, 40(8): 1235-1245
    [22]
    贾志舰. 微流控芯片加工和试样引入技术的研究[D]. 杭州: 浙江大学, 2005

    JIA Z J. Studies on fabrication and sample introduction techniques for microfluidic chips[D]. Hangzhou: ZheJiang University, 2005
    [23]
    MAO X L, HUANG T J. Microfluidic diagnostics for the developing world[J]. Lab on A Chip,2012,12(8):1412−1416. doi: 10.1039/c2lc90022j
    [24]
    周文超. 多通道微流控芯片的光探测及系统集成化方法研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014

    ZHOU W C. Study on optical detection and integration in microfluidic chip with multi-channel cell[D]. Changchun: Changchun Institute of Optics (Fine Mechanics and Physics Chinese Academy of Sciences), 2014
    [25]
    陈琛. 核酸等温扩增的集成化微流控芯片研究[D]. 武汉: 华中科技大学, 2017

    CHEN C. Fully integrated loop-mediated isothermal amplification microdevices for nucleic acid detection[D]. Wuhan: Huazhong university of science& technology, 2017
    [26]
    邹晶晶, 黎柱均, 刘云帆, 等. 集成式微流控液滴数字化等温扩增用于尿路感染细菌快速检测[J]. 分析化学,2022,50(8):1158−1167. [ZOU J J, LI Z Y, LIU Y F, et al. Integrated microfluidic droplet digital isothermal amplification enabled rapid detection of urinary tract infection bacteri[J]. Chinese Journal of Analytical Chemistry,2022,50(8):1158−1167.

    ZOU J J, LI Z Y, LIU Y F, et al. Integrated microfluidic droplet digital isothermal amplification enabled rapid detection of urinary tract infection bacteri[J]. Chinese Journal of Analytical Chemistry. 2022, 50(8): 1158-1167
    [27]
    李楠, 徐友春, 程京. 便携式全集成核酸分析系统技术综述[J]. 中国生物医学工程学报,2022,41(5):602−613. [LI N, XU Y C, CHENG J. Review of the portable fully integrated nucleic acid analysis system[J]. Chinese Journal of Biomedical Engineering,2022,41(5):602−613. doi: 10.3969/j.issn.0258-8021.2022.05.009

    LI N, XU Y C, CHENG J. Review of the portable fully integrated nucleic acid analysis system[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 602-613. doi: 10.3969/j.issn.0258-8021.2022.05.009
    [28]
    王哲, 雷舒文, 段林洁, 等. 数字PCR应用研究进展[J]. 顺德职业技术学院学报,2020,18(1):1−4,11. [WANG Z, LEI S W, DUAN L J, et al. On the current research of digital PCR application[J]. Journal of Shunde Polytechnic,2020,18(1):1−4,11.

    WANG Z, LEI S W, DUAN L J, et al. On the current research of digital PCR application[J]. Journal of Shunde Polytechnic, 2020, 18(01): 1-4, 11
    [29]
    李春勇. 数字PCR技术原理及应用[J]. 生物技术世界,2014(11):10−13. [LI C Y. Principle and application of digital PCR technology[J]. Biotech World,2014(11):10−13.

    LI C Y. Principle and application of digital PCR technology[J]. Biotech World, 2014(11): 10-13
    [30]
    SYKES P J, NEOH S H, et al. Quantitation of targets for PCR by use of limiting dilution[J]. BioTechniques,1992,13(3):444−449.
    [31]
    李智杰, 刘占悝, 李健友, 等. 数字PCR技术研究进展[J]. 特产研究,2019,41(1):120−123. [LI Z J, LI Z L, LI J Y, et al. Research progress of digital PCR technology[J]. Special Wild Economic Animal and Plant Research,2019,41(1):120−123.

    LI Z J, LI Z L, LI J Y, et al. Research progress of digital PCR technology [J]. Special Wild Economic Animal and Plant Research, 2019, 41(1): 120-123
    [32]
    黄瑾, 梁涛波, 许恒毅. 数字PCR在生物学检测中应用的研究进展[J]. 生命科学,2021,33(2):255−264. [HUANG J, LIANG T B, XU H Y. Research progress of application of digital PCR in biological detection[J]. Chinese Bulletin of Life Sciences,2021,33(2):255−264.

    HUANG J, LIANG T B, XU H Y. Research progress of application of digital PCR in biological detection[J]. Chinese Bulletin of Life Sciences, 2021, 33(2): 255-264
    [33]
    赵新, 兰青阔, 陈锐, 等. 应用微滴数字PCR技术快速检测食用菌中沙门氏菌[J]. 食品与生物技术学报,2017,36(3):315−321. [ZHAO X, LAN Q K, CHEN R, et al. Rapid detection of Salmonellla spp. in edible fungi by droplet digital PCR[J]. Journal of Food Science and Biotechnology,2017,36(3):315−321.

    ZHAO X, LAN Q K, CHEN R, et al. Rapid Detection of Salmonellla spp.in Edible Fungi by Droplet Digital PCR[J]. Journal of Food Science and Biotechnology, 2017, 36(3): 315-321
    [34]
    赵丽青, 方佩佩, 唐静, 等. 数字PCR定量检测食品中单核细胞增生李斯特氏菌方法的研究[J]. 食品安全质量检测学报,2017,8(11):4133−4138. [ZHAO L Q, FANG P P, TANG J, et al. Detection of Listeria monocytogenes in foods by droplet digital PCR[J]. Journal of Food Safety & Quality,2017,8(11):4133−4138. doi: 10.3969/j.issn.2095-0381.2017.11.009

    ZHAO L Q, FANG P P, TANG J, et al. Detection of Listeria monocytogenes in foods by droplet digital PCR[J]. Journal of Food Safety & Quality, 2017, 8(11): 4133-4138 doi: 10.3969/j.issn.2095-0381.2017.11.009
    [35]
    BIAN X J, JING F X, LI G, et al. A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes[J]. Biosensors & bioelectronics,2015,74:770−777.
    [36]
    邓雪蕾, 张苑怡, 袁浩钧, 等. 液滴数字聚合酶链式反应芯片及其在致病菌检测中的应用[J]. 分析测试学报,2017,36(10):1191−1196. [DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection[J]. Journal of Instrumental Analysis,2017,36(10):1191−1196.

    DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection[J]. Journal of Instrumental Analysis, 2017, 36(10): 1191-1196
    [37]
    方佩佩, 赵丽青, 马云, 等. 副溶血性弧菌微滴数字PCR定量方法的建立[J]. 食品工业科技,2018,39(19):252−257. [FANG P P, ZHAO L Q, MA Y, et al. Establishment of digital PCR assay for detection of Vibrio parahemolyticus[J]. Science and Technology of Food Industry,2018,39(19):252−257.

    FANG P P, ZHAO L Q, MA Y, et al. Establishment of Digital PCR Assay for Detection of Vibrio parahemolyticus[J]. Science and Technology of Food Industry, 2018, 39(19): 252-257
    [38]
    LEI S W, GU X K, ZHONG Q P, et al. Absolute quantification of Vibrio parahaemolyticus by multiplex droplet digital PCR for simultaneous detection of tlh, tdh and ureR based on single intact cell[J]. Food Control,2020,114:107207. doi: 10.1016/j.foodcont.2020.107207
    [39]
    NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research,2000,28(12):E63. doi: 10.1093/nar/28.12.e63
    [40]
    MEI X A, TLCD E, XIONG X A, et al. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip[J]. Food Control,2022,136:108824. doi: 10.1016/j.foodcont.2022.108824
    [41]
    TAN Y L, WANG T, HE J, et al. Droplet microfluidic-based loop-mediated isothermal amplification (dLAMP) for simultaneous quantification of multiple targets[J]. Star Protocols,2022,3(2):101335. doi: 10.1016/j.xpro.2022.101335
    [42]
    YUAN H, CHAO Y C, SHUM H C. Droplet and microchamber-based digital loop-mediated isothermal amplification (dLAMP)[J]. Small,2020,16(9):1904469. doi: 10.1002/smll.201904469
    [43]
    王珍, 贺磊, 肖英平, 等. 微流控芯片恒温扩增技术快速检测米饭中的蜡样芽孢杆菌[J]. 浙江大学学报(农业与生命科学版),2021,47(2):193−202. [WANG Z, HE L, XIAO Y P, et al. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2021,47(2):193−202.

    WANG Z, HE L, XIAO Y P, et al. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2021, 47(2): 193-202
    [44]
    TAO Y, YUN J, WANG J, et al. High-performance detection of Mycobacterium bovis in milk using digital LAMP[J]. Food Chemistry,2020,327:126945. doi: 10.1016/j.foodchem.2020.126945
    [45]
    SAYAD A A, IBRAHIM F, UDDIN S M, et al. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection[J]. Sensors and Actuators: B. Chemical,2016,227:600−609. doi: 10.1016/j.snb.2015.10.116
    [46]
    鞠鹤鹏, 戴菁, 谢逸欣, 等. LAMP微流控芯片快速检测三种食源性致病菌[J]. 解放军预防医学杂志,2018,36(3):309−313. [JU H P, DAI J, XIE Y X, et al. Quick detection of three food-borne pathogens by LAMP microfluidic chip[J]. Journal of Preventive Medicine of Chinese People's Liberation Army,2018,36(3):309−313.

    JU H P, DAI J, XIE Y X, et al. Quick detection of three food-borne pathogens by LAMP microfluidic chip[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2018, 36(3): 309-313
    [47]
    PIEPENBURG O, WILLIAM C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. Plos Biology,2006,4(7):1115−1121.
    [48]
    杨健, 侯婷婷, 佐兆杭, 等. 牛乳中蜡样芽孢杆菌荧光定量PCR检测方法的建立及验证[J]. 中国生物制品学杂志,2019,32(3):324−327,332. [YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk[J]. Chinese Journal of Biologicals,2019,32(3):324−327,332.

    YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk[J]. Chinese Journal of Biologicals, 2019, 32(3): 324-327, 332
    [49]
    秦雪, 付世骞, 杨鑫焱, 等. 重组酶聚合酶等温扩增技术在食源性致病菌检测中的应用[J]. 食品工业科技,2021,42(20):449−455. [QIN X, FU S Q, YANG X Y, et al. Application of recombinase polymerase amplification in detection of foodborne pathogen[J]. Science and Technology of Food Industry,2021,42(20):449−455.

    QIN X, FU S Q, YANG X Y, et al. Application of recombinase polymerase amplification in detection of foodborne pathogen[J]. Science and Technology of Food Industry, 2021, 42(20): 449-455
    [50]
    LI J, MACDONALD J, STETTEN F V. Correction: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst,2020,145(5):1950−1960. doi: 10.1039/C9AN90127B
    [51]
    YIN J X, ZOU Z Y, HU Z M, et al. A sample-in-multiplex-digital-answer-out chip for fast detection of pathogens[J]. Lab on A Chip,2020,20(5):979−986. doi: 10.1039/C9LC01143A
    [52]
    CRANNELL Z A, ROHRMAN B, RICHARDS-KORTUM R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat[J]. PLoS One,2017,9(11):112146.
    [53]
    CUI J Q, LIU F X, PARK H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection[J]. Biosensors & Bioelectronics,2022,202:114019.
    [54]
    DENG H M, GAO Z Q. Bioanalytical applications of isothermal nucleic acid amplification techniques[J]. Analytica Chimica Acta,2015,853:30−45. doi: 10.1016/j.aca.2014.09.037
    [55]
    YIN J X, SUO Y J, ZOU Z Y, et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification[J]. Lab on A Chip,2019,19(17):2769−2785. doi: 10.1039/C9LC00389D
    [56]
    高雯暄, 甘芝霖, 陈爱亮, 等. 核酸技术在食源性致病菌检测中的研究进展[J]. 食品安全质量检测学报,2020,11(24):9440−9450. [GAO W X, GAN Z L, CHEN A L, et al. Research progresses of nucleic acid technologies in the testing of food-borne pathogens[J]. Journal of Food Safety & Quality,2020,11(24):9440−9450.

    GAO W X, GAN Z L, CHEN A L, et al. Research progresses of nucleic acid technologies in the testing of food-borne pathogens[J]. Journal of Food Safety & Quality, 2020, 11(24): 9440-9450
    [57]
    SCHULER F, SCHWEMMER F, TROTTER M, et al. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA[J]. Lab on A Chip,2015,15(13):2759−66. doi: 10.1039/C5LC00291E
    [58]
    CHOI G, JUNG J H, PARK B H, et al. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria[J]. Lab on A Chip,2016,16(12):2309−2316. doi: 10.1039/C6LC00329J
    [59]
    KERSTING S, RAUSCH V, BIER FF, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens[J]. Mikrochimica Acta,2014,181(13-14):1715−1723. doi: 10.1007/s00604-014-1198-5
    [60]
    施奕, 徐昌平, 余蓓蓓, 等. 重组酶聚合酶扩增技术研究进展[J]. 病毒学报,2020,36(3):522−532. [SHI Y, XU C P, YU B B. Research progress in recombinase polymerase amplification (RPA)[J]. Chinese Journal of Virology,2020,36(3):522−532.

    SHI Y, XU C P, YU B B. Research progress in recombinase polymerase amplification (RPA)[J]. Chinese Journal of Virology, 2020, 36(3): 522-532
    [61]
    WANG M, YANG J J, GAI Z T, et al. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk[J]. International Journal of Food Microbiology,2017,266:251−256.
    [62]
    YANG J, ZHANG N, LV J, et al. Comparing the performance of conventional PCR, RTQ-PCR, and droplet digital PCR assays in detection of Shigella[J]. Molecular and Cellular Probes,2020,51(3):101531.
    [63]
    周巍, 李月华, 孙勇, 等. 微滴式数字PCR技术定量检测发酵乳中金黄色葡萄球菌[J]. 食品科学,2017,38(16):287−291. [ZHOU W, LI Y H, SUN Y, et al. Quantitative detection of Staphylococcus aureus in yogurt by droplet digital PCR assay[J]. Food Science,2017,38(16):287−291.

    ZHOU W, LI Y H, SUN Y, et al. Quantitative detection of Staphylococcus aureus in yogurt by droplet digital PCR assay[J]. Food Science, 2017, 38(16): 287-291
    [64]
    张明明, 肖剑, 林秀敏, 等. 多重微滴数字PCR同时定量检测三种食源性致病菌DNA拷贝数[J]. 农业生物技术学报,2022,30(3):606−618. [ZHANG M M, XIAO J, LIN X M, et al. Simultaneous quantification method of DNA copy number for three food-borne pathogens by multiplex droplet digital PCR[J]. Journal of Agricultural Biotechnology,2022,30(3):606−618.

    ZHANG M M, XIAO J, LIN X M, et al. Simultaneous quantification method of DNA copy number for three food-borne pathogens by multiplex droplet digital PCR[J]. Journal of Agricultural Biotechnology, 2022, 30(3): 606-618
    [65]
    NGUYEN H V, NGUYEN V D, LEE E Y, et al. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample[J]. Biosensors & Bioelectrinics,2019,136:132−139.
    [66]
    宋娜, 刘朝阳, 李梦蓝, 等. 微流控芯片环介导恒温扩增技术快速检测8种肠道致病菌[J]. 国际检验医学杂志,2022,43(12):1425−1429. [SONG N, LIU C Y, LI M L, et al. Rapid detection of eight enteric pathogenic bacteria by isothermal amplification with microfluidic chip loop-mediated isothermal amplification[J]. International Journal of Laboratory Medicine,2022,43(12):1425−1429.

    SONG N, LIU C Y, LI M L, et al. Rapid detection of eight enteric pathogenic bacteria by isothermal amplification with microfluidic chip loop-mediated isothermal amplification[J]. International Journal of Laboratory Medicine, 2022, 43(12): 1425-1429
    [67]
    范一灵, 王淑娟, 李琼琼, 等. 重组酶聚合酶扩增检测产志贺毒素大肠埃希菌的微流控芯片技术[J]. 食品科学,2021,42(10):297−304. [FAN Y L, WANG S J, LI X X, et al. Rapid detection of shiga toxin-producing Escherichia coli by recombinase polymerase amplification combined with centrifugal compact disc microfluidic chip[J]. Food Science,2021,42(10):297−304.

    FAN Y L, WANG S J, LI X X, et al. Rapid detection of shiga toxin-producing Escherichia coli by recombinase polymerase amplification combined with centrifugal compact disc microfluidic chip [J]. Food Science, 2021, 42(10): 297-304
  • Cited by

    Periodical cited type(14)

    1. 王佳,丁方莉,安宇,曾雪莹,张智慧,李思楠,徐开媛,周芳,王颖,张璐,徐炳政,孙泽堃. 芸豆-蓝靛果复合发酵液制备工艺优化及其抗氧化活性. 食品工业科技. 2025(03): 222-231 . 本站查看
    2. 李天昊,位绍文,毛伟健,姜秀兰,薛彦华,丁洪发,盖凌云,程凡升,徐海忠. 三种酶前处理对香蕉酵素理化性质、生物活性及感官的影响. 食品工业科技. 2024(07): 86-92 . 本站查看
    3. 白海军,庞惟俏,张智慧,王颖. 藜麦—蓝靛果复合汁发酵工艺及其上清液抗氧化与抗疲劳作用研究. 食品与机械. 2024(07): 148-154 .
    4. 陈雨欣,杨峰山,付海燕,宋新宇,刘春光. 食用植物酵素发酵过程中主要成分与功能研究进展. 中国农学通报. 2024(24): 143-150 .
    5. 孙茂成,王颖地,费鹏,昂媛,周铁莉,杨柳. 植物酵素的发酵微生物、加工技术及潜在生理功能. 中国调味品. 2024(11): 200-204 .
    6. 张智慧,庞惟俏,徐炳政,王颖,王佳,佐兆杭,孙维,徐开媛,李思楠. 藜麦和蓝靛果发酵菌株的筛选及复合发酵工艺的优化. 食品工业科技. 2024(24): 204-213 . 本站查看
    7. 刘倩,袁越,张杰,赵瑞丽,赵黎明. 不同菌种发酵对诺丽果酵素的抗氧化性及风味物质的影响. 食品工业科技. 2023(04): 129-137 . 本站查看
    8. 马天颖,蔡俊. 植物乳杆菌发酵马齿苋陈皮工艺优化及发酵液抗氧化活性分析. 食品研究与开发. 2023(08): 143-148 .
    9. 王虎玄,柯西娜,王聪,朱亚南,孙宏民. 苹果酵素的制备及其抗氧化功能研究. 陕西科技大学学报. 2023(03): 37-46 .
    10. 田文静,武亚帅,程雪华,马长路. 柿子酵素发酵过程中活性成分及其抗氧化性能的研究. 北京农业职业学院学报. 2023(04): 59-66 .
    11. 韩怀磊,李文,王陶,贺羽,杨太平,袁珍虎,石相弘. 枯草芽孢杆菌发酵复配饲料的抗氧化活性研究. 饲料研究. 2023(12): 71-76 .
    12. 李昕阳,王淑敏,冷悦,陆珠,王旭,王欢,陈长宝. 蜜环菌液体培养基配方优选及其活性成分和抗氧化活性研究. 食品安全质量检测学报. 2023(19): 272-279 .
    13. 吕铭守,高亦昕,石彦国,刘琳琳,孙冰玉,朱秀清. 响应面法优化杂豆酸豆乳发酵工艺及体外消化分析. 食品工业科技. 2022(10): 238-245 . 本站查看
    14. 王帅,宋奇,范影,冯超. 桑葚酵素发酵过程中理化指标及抗氧化活性的变化. 中国酿造. 2022(11): 84-88 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (175) PDF downloads (25) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return