Citation: | ZHANG Ruijia, WU Peiwen, XIONG Jiaxin, et al. Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes[J]. Science and Technology of Food Industry, 2023, 44(16): 464−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110224. |
[1] |
中国人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2021
NBSPRC. China statistical yearbook[M]. Beijing: China Statistics Press, 2021.
|
[2] |
穆维松, 冯建英, 田东, 等. 我国鲜食葡萄产业的国际贸易与国内需求形势[J]. 中国果树,2019(2):5−10. [MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits,2019(2):5−10.
MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits, 2019(2): 5-10.
|
[3] |
朱志强, 集贤, 张平, 等. 鲜食葡萄贮运期黑斑病害致病病原菌分离鉴定[J]. 包装工程,2020,41(21):31−37. [ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering,2020,41(21):31−37.
ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering, 2020, 41(21): 31-37.
|
[4] |
LIU P, LI D L, XU W C, et al. Research on SO2 controlled release packaging on the preservation performance of ‘kyoho’ grapes[J]. Applied Mechanics and Materials,2015,731:369−373. doi: 10.4028/www.scientific.net/AMM.731.369
|
[5] |
YOUSSEF K, JUNIOR O J, MUHLBEIER D T, et al. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation[J]. Horticulturae,2020,6(2):20. doi: 10.3390/horticulturae6020020
|
[6] |
集贤, 张平, 朱志强, 等. SO2不同保鲜处理对醉金香葡萄贮藏效果的影响[J]. 包装工程,2020,41(7):1−9. [JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "Zuijinxiang" grape during storage[J]. Packaging Engineering,2020,41(7):1−9.
JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "zuijinxiang" grape during storage[J]. Packaging Engineering, 2020, 41(7): 1-9.
|
[7] |
焦旋, 高振峰, 冯志宏, 等. 二氧化硫精准释放葡萄保鲜片的研制与应用[J]. 食品工业科技,2021,42(6):297−303, 356. [JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry,2021,42(6):297−303, 356.
JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry, 2021, 42(6): 297-303, 356.
|
[8] |
陈仁驰, 吴培文, 许蕙金兰, 等. SO2结合壳聚糖处理对采后鲜食葡萄品质的影响[J]. 食品研究与开发,2018,39(19):185−189. [CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development,2018,39(19):185−189.
CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development, 2018, 39(19): 185-189.
|
[9] |
刘程宏, 段罗顺, 柴丽娜, 等. 鲜食葡萄贮藏保鲜技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5376−5381. [LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety,2019,10(16):5376−5381.
LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety, 2019, 10(16): 5376-5381.
|
[10] |
孟创鸽, 曹红霞, 韩峪, 等. 葡萄贮藏保鲜技术研究进展[J]. 黑龙江农业科学,2022(5):102−106. [MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences,2022(5):102−106.
MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences, 2022(5): 102-106.
|
[11] |
李杰, 魏佳, 张政, 等. 二氧化硫(SO2)熏蒸改善木纳格葡萄的采后品质[J]. 现代食品科技,2020,36(2):114−121. [LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology,2020,36(2):114−121.
LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology, 2020, 36(2): 114-121.
|
[12] |
佟继旭, 朱志强, 赵瑞瑞, 等. 不同SO2保鲜剂对红地球葡萄采后贮藏品质的影响[J]. 农产品质量与安全,2019(1):19−23. [DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality and Safety of Agro-products,2019(1):19−23.
DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality And Safety Of Agro-Products, 2019(1): 19-23.
|
[13] |
AHMED S, ROBERTO S R, DOMINGUES A R, et al. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage[J]. Horticulturae,2018,4(4):29. doi: 10.3390/horticulturae4040029
|
[14] |
佟继旭, 朱志强, 钱永忠. 不同贮藏条件下葡萄的SO2残留及膳食风险评估[J]. 食品科学,2020,41(1):163−167. [TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science,2020,41(1):163−167.
TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science, 2020, 41(1): 163-167.
|
[15] |
CHEN Y P, LI Z B, ETTOUMI F E, et al. The detoxification of cellular sulfite in table grape under SO2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns[J]. Journal of Hazardous Materials,2022,439:129685. doi: 10.1016/j.jhazmat.2022.129685
|
[16] |
颜孙安, 姚清华, 林香信, 等. 成熟度对红地球葡萄品质的影响[J]. 食品安全质量检测学报,2020,11(14):4581−4588. [YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality,2020,11(14):4581−4588.
YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality, 2020, 11(14): 4581-4588.
|
[17] |
潘照, 周文化, 肖玥惠子. 基于主成分分析的不同种鲜食葡萄品质评价[J]. 食品与机械,2018,34(9):139−146. [PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery,2018,34(9):139−146.
PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery, 2018, 34(9): 139-146.
|
[18] |
XIAO X Q, FU Z T, ZHU Z Q, et al. Improved preservation process for table grapes cleaner production in cold chain[J]. Journal of Cleaner Production,2019,211:1171−1179. doi: 10.1016/j.jclepro.2018.11.279
|
[19] |
张晓锋, 娄玉穗, 尚泓泉, 等. 不同保鲜处理对"阳光玫瑰"葡萄贮藏品质及生理生化的影响[J]. 河南农业大学学报,2019,53(5):698−703. [ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University,2019,53(5):698−703.
ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University, 2019, 53(5): 698-703.
|
[20] |
FIDELIBUS M W, PETRACEK P, MCARTNEY S. Jasmonic acid activates the fruit-pedicel abscission zone of "thompson seedless" grapes, especially with co-application of 1-aminocyclopropane-1-carboxylic acid[J]. Plants,2022,11(9):1245. doi: 10.3390/plants11091245
|
[21] |
QIU Z L, WEN Z, YANG K, et al. Comparative proteomics profiling illuminates the fruitlet abscission mechanism of sweet cherry as induced by embryo abortion[J]. International Journal of Molecular Sciences,2020,21(4):1200. doi: 10.3390/ijms21041200
|
[22] |
XU P P, CHEN H Y, CAI W M. Transcription factor cdf4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in arabidopsis[J]. EMBO reports,2020,21(7):e48967. doi: 10.15252/embr.201948967
|
[23] |
PATHARKAR O R, WALKER J C. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence[J]. Plant Science,2019,284:25−29. doi: 10.1016/j.plantsci.2019.03.016
|
[24] |
YUAN Y Y, WEI J, XING S J, et al. Sulfur dioxide (SO2) accumulation in postharvest grape: The role of pedicels of four different varieties[J]. Postharvest Biology and Technology,2022,190:111953. doi: 10.1016/j.postharvbio.2022.111953
|
[25] |
WU P W, XIN F Y, XU H J L, et al. Chitosan inhibits postharvest berry abscission of ‘kyoho’ table grapes by affecting the structure of abscission zone, cell wall degrading enzymes and SO2 permeation[J]. Postharvest Biology and Technology,2021,176:111507. doi: 10.1016/j.postharvbio.2021.111507
|
[26] |
高登涛, 李秋利, 魏志峰, 等. 植物对二氧化硫胁迫反应与应答机制研究进展[J]. 广东农业科学,2016,43(11):27−35. [GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences,2016,43(11):27−35.
GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences, 2016, 43(11): 27-35.
|
[27] |
HU K D, TANG J, ZHAO D L, et al. Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and no signaling pathways[J]. Biologia Plantarum,2014,58(4):676−680. doi: 10.1007/s10535-014-0440-7
|
[28] |
TAYLOR J S, REID D M, RICHARD P P. Mutual antagonism of sulfur dioxide and abscisic acid in their effect on stomatal aperture in broad bean (Vicia faba L.) epidermal strips 1[J]. Plant Physiology,1981,68(6):1504−1507. doi: 10.1104/pp.68.6.1504
|
[29] |
WEI A L, XIN X J, WANG Y S, et al. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in hemerocallis fulva[J]. Ecotoxicology and Environmental Safety,2013,98:41−45. doi: 10.1016/j.ecoenv.2013.09.029
|
[30] |
LI L H, XUE M Z, YI H L. Uncovering microrna-mediated response to SO2 stress in arabidopsis thaliana by deep sequencing[J]. Journal of Hazardous Materials,2016,316:178−185. doi: 10.1016/j.jhazmat.2016.05.014
|
[31] |
ZHANG X C, LI D, WANG Y, et al. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in postharvest strawberry fruit[J]. Postharvest Biology and Technology,2022,192:112021. doi: 10.1016/j.postharvbio.2022.112021
|
[32] |
WEI A L, FU B C, WANG Y S, et al. Involvement of no and ros in sulfur dioxide induced guard cells apoptosis in tagetes erecta[J]. Ecotoxicology and Environmental Safety,2015,114:198−203. doi: 10.1016/j.ecoenv.2015.01.024
|
[33] |
葛毅强, 张维一, 叶强. SO2对鲜食葡萄一些酶活性营养成分及膜透性的影响[J]. 新疆农业大学学报,1997(2):48−52. [GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University,1997(2):48−52.
GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University, 1997(2): 48-52.
|
[34] |
孔秋莲, 修德仁, 胡文玉, 等. 葡萄贮藏中SO2伤害与膜脂过氧化的关系[J]. 果树学报,2008,25(3):322−326. [KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science,2008,25(3):322−326.
KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science, 2008, 25(3): 322-326.
|
[35] |
HUANG C X, MA J M, LIANG C, et al. Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues[J]. Bioresource Technology,2018,263:17−24. doi: 10.1016/j.biortech.2018.04.104
|
[36] |
张蕊, 李来庚. 植物细胞壁信号研究进展[J]. 植物生理学报,2018,54(8):1254−1262. [ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications,2018,54(8):1254−1262.
ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications, 2018, 54(8): 1254-1262.
|
[37] |
LEE YUREE. More than cell wall hydrolysis: Orchestration of cellular dynamics for organ separation[J]. Current Opinion in Plant Biology,2019,51:37−43. doi: 10.1016/j.pbi.2019.03.009
|
[38] |
陈发河, 吴光斌, 冯作山, 等. 葡萄贮藏过程中落粒与离区酶活性变化及植物生长调节物质的关系[J]. 植物生理与分子生物学学报,2003,29(2):133−140. [CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):133−140.
CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(2): 133-140.
|
[39] |
GIRAUD E, IVANOVA A, GORDON C, et al. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses[J]. Plant, Cell & Environment,2012,35(2):405−417.
|
[40] |
ZHAO J, YI H L. Genome-wide transcriptome analysis of arabidopsis response to sulfur dioxide fumigation[J]. Molecular Genetics and Genomics,2014,289(5):989−999. doi: 10.1007/s00438-014-0870-0
|
[41] |
TRIPATHI S K, SANE A P, NATH P, et al. Organ abscission in plants: Understanding the process through transgenic approaches[M]. Research Signpost, 2008: 155-180.
|
[42] |
KUHN N, SERRANO A, ABELLO C, et al. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission[J]. BMC Plant Biology,2016,16(1):234. doi: 10.1186/s12870-016-0914-1
|
[43] |
GULFISHAN M, J A, BHAT T A, et al. Chapter 16-plant senescence and organ abscission[M]. Senescence signalling and control in plants. New York; Academic Press. 2018: 255−272.
|
[44] |
PATHARKAR O R, WALKER J C. Advances in abscission signaling[J]. Journal of Experimental Botany,2017,69(4):733−740.
|
[45] |
杨盛迪, 孟祥轩, 郭大龙, 等. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学,2022,55(11):2214−2226. [YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica,2022,55(11):2214−2226.
YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
|
[46] |
葛毅强, 陈颖. SO2对葡萄采后呼吸强度及内源激素的影响[J]. 园艺学报,1997,24(2):17−21. [GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica,1997,24(2):17−21.
GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica, 1997, 24(2): 17-21.
|
[47] |
XIA Z, SUN K, WANG M, et al. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and cat-mediated H2O2 scavenging[J]. PLoS One,2012,7(5):e37383. doi: 10.1371/journal.pone.0037383
|
[48] |
李秋雨, 曾凯芳, 姚世响. 活性氧在果实成熟和衰老中的作用及调控机制[J]. 食品与发酵工业,2020,46:271−276. [LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. Food and Fermentation Industries,2020,46:271−276.
LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. ] Food and Fermentation Industries, 2020, 46: 271-276.
|
[49] |
徐松华. 逆境条件下植物体内活性氧代谢研究进展[J]. 安徽农学通报,2021,27(21):29−32. [XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin,2021,27(21):29−32.
XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin, 2021, 27(21): 29-32.
|
[50] |
LI L H, YI H L. Effect of sulfur dioxide on ros production, gene expression and antioxidant enzyme activity in arabidopsis plants[J]. Plant Physiology and Biochemistry,2012,58:46−53. doi: 10.1016/j.plaphy.2012.06.009
|
[51] |
崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报,2017,33(3):220−226. [CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology,2017,33(3):220−226.
CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226.
|
[52] |
ZHANG Z, WU Z H, YUAN Y Y, et al. Sulfur dioxide mitigates oxidative damage by modulating hydrogen peroxide homeostasis in postharvest table grapes[J]. Postharvest Biology and Technology,2022,188:111877. doi: 10.1016/j.postharvbio.2022.111877
|
[53] |
孔秋莲, 胡文玉, 修德仁, 等. 葡萄贮藏中SO2伤害与活性氧代谢的关系[J]. 沈阳农业大学学报,2001,32(6):449−451. [KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J]. Journal of Shenyang Agricultural University,2001,32(6):449−451.
KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J], Journal of Shenyang Agricultural University, 2001, 32(6): 449-451.
|
[54] |
TIAN S P, QIN G Z, LI B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology,2013,82(6):593−602. doi: 10.1007/s11103-013-0035-2
|
[55] |
FORLANI S, MASIERO S, MIZZOTTI C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens[J]. Journal of Experimental Botany,2019,70(11):2993−3006. doi: 10.1093/jxb/erz112
|
[56] |
MAJDA M, ROBERT S. The role of auxin in cell wall expansion[J]. International Journal of Molecular Sciences,2018,19(4):951. doi: 10.3390/ijms19040951
|