ZHANG Ruijia, WU Peiwen, XIONG Jiaxin, et al. Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes[J]. Science and Technology of Food Industry, 2023, 44(16): 464−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110224.
Citation: ZHANG Ruijia, WU Peiwen, XIONG Jiaxin, et al. Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes[J]. Science and Technology of Food Industry, 2023, 44(16): 464−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110224.

Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes

More Information
  • Received Date: November 20, 2022
  • Available Online: June 07, 2023
  • At present, sulfur dioxide (SO2) treatment is the most widely used storage and fresh-keeping method of grape fruits, which has many advantages such as good bacteriostatic effect, convenient use and low cost. However, excessive SO2 in the environment will lead to serious damage to grape fruits, especially the phenomenon of fruit shattering and bleaching, resulting in greater losses. In view of the problem of grape berry abscission caused by excessive SO2 in the environment, this paper reviewes the relevant research progress at home and abroad, and discussed the mechanism of grape berry abscission from five aspects: Affecting stomata opening, damaging tissue structure, changing cell wall degrading enzyme activity, affecting hormone content and reactive oxygen species level. Finally, the research and application prospects of SO2 in grape fruit preservation are prospected in order to provide a theoretical basis for the accurate application of SO2 in grape preservation and the realization of loss reduction and efficiency improvement.
  • [1]
    中国人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2021

    NBSPRC. China statistical yearbook[M]. Beijing: China Statistics Press, 2021.
    [2]
    穆维松, 冯建英, 田东, 等. 我国鲜食葡萄产业的国际贸易与国内需求形势[J]. 中国果树,2019(2):5−10. [MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits,2019(2):5−10.

    MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits, 2019(2): 5-10.
    [3]
    朱志强, 集贤, 张平, 等. 鲜食葡萄贮运期黑斑病害致病病原菌分离鉴定[J]. 包装工程,2020,41(21):31−37. [ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering,2020,41(21):31−37.

    ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering, 2020, 41(21): 31-37.
    [4]
    LIU P, LI D L, XU W C, et al. Research on SO2 controlled release packaging on the preservation performance of ‘kyoho’ grapes[J]. Applied Mechanics and Materials,2015,731:369−373. doi: 10.4028/www.scientific.net/AMM.731.369
    [5]
    YOUSSEF K, JUNIOR O J, MUHLBEIER D T, et al. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation[J]. Horticulturae,2020,6(2):20. doi: 10.3390/horticulturae6020020
    [6]
    集贤, 张平, 朱志强, 等. SO2不同保鲜处理对醉金香葡萄贮藏效果的影响[J]. 包装工程,2020,41(7):1−9. [JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "Zuijinxiang" grape during storage[J]. Packaging Engineering,2020,41(7):1−9.

    JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "zuijinxiang" grape during storage[J]. Packaging Engineering, 2020, 41(7): 1-9.
    [7]
    焦旋, 高振峰, 冯志宏, 等. 二氧化硫精准释放葡萄保鲜片的研制与应用[J]. 食品工业科技,2021,42(6):297−303, 356. [JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry,2021,42(6):297−303, 356.

    JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry, 2021, 42(6): 297-303, 356.
    [8]
    陈仁驰, 吴培文, 许蕙金兰, 等. SO2结合壳聚糖处理对采后鲜食葡萄品质的影响[J]. 食品研究与开发,2018,39(19):185−189. [CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development,2018,39(19):185−189.

    CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development, 2018, 39(19): 185-189.
    [9]
    刘程宏, 段罗顺, 柴丽娜, 等. 鲜食葡萄贮藏保鲜技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5376−5381. [LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety,2019,10(16):5376−5381.

    LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety, 2019, 10(16): 5376-5381.
    [10]
    孟创鸽, 曹红霞, 韩峪, 等. 葡萄贮藏保鲜技术研究进展[J]. 黑龙江农业科学,2022(5):102−106. [MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences,2022(5):102−106.

    MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences, 2022(5): 102-106.
    [11]
    李杰, 魏佳, 张政, 等. 二氧化硫(SO2)熏蒸改善木纳格葡萄的采后品质[J]. 现代食品科技,2020,36(2):114−121. [LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology,2020,36(2):114−121.

    LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology, 2020, 36(2): 114-121.
    [12]
    佟继旭, 朱志强, 赵瑞瑞, 等. 不同SO2保鲜剂对红地球葡萄采后贮藏品质的影响[J]. 农产品质量与安全,2019(1):19−23. [DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality and Safety of Agro-products,2019(1):19−23.

    DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality And Safety Of Agro-Products, 2019(1): 19-23.
    [13]
    AHMED S, ROBERTO S R, DOMINGUES A R, et al. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage[J]. Horticulturae,2018,4(4):29. doi: 10.3390/horticulturae4040029
    [14]
    佟继旭, 朱志强, 钱永忠. 不同贮藏条件下葡萄的SO2残留及膳食风险评估[J]. 食品科学,2020,41(1):163−167. [TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science,2020,41(1):163−167.

    TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science, 2020, 41(1): 163-167.
    [15]
    CHEN Y P, LI Z B, ETTOUMI F E, et al. The detoxification of cellular sulfite in table grape under SO2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns[J]. Journal of Hazardous Materials,2022,439:129685. doi: 10.1016/j.jhazmat.2022.129685
    [16]
    颜孙安, 姚清华, 林香信, 等. 成熟度对红地球葡萄品质的影响[J]. 食品安全质量检测学报,2020,11(14):4581−4588. [YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality,2020,11(14):4581−4588.

    YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality, 2020, 11(14): 4581-4588.
    [17]
    潘照, 周文化, 肖玥惠子. 基于主成分分析的不同种鲜食葡萄品质评价[J]. 食品与机械,2018,34(9):139−146. [PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery,2018,34(9):139−146.

    PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery, 2018, 34(9): 139-146.
    [18]
    XIAO X Q, FU Z T, ZHU Z Q, et al. Improved preservation process for table grapes cleaner production in cold chain[J]. Journal of Cleaner Production,2019,211:1171−1179. doi: 10.1016/j.jclepro.2018.11.279
    [19]
    张晓锋, 娄玉穗, 尚泓泉, 等. 不同保鲜处理对"阳光玫瑰"葡萄贮藏品质及生理生化的影响[J]. 河南农业大学学报,2019,53(5):698−703. [ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University,2019,53(5):698−703.

    ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University, 2019, 53(5): 698-703.
    [20]
    FIDELIBUS M W, PETRACEK P, MCARTNEY S. Jasmonic acid activates the fruit-pedicel abscission zone of "thompson seedless" grapes, especially with co-application of 1-aminocyclopropane-1-carboxylic acid[J]. Plants,2022,11(9):1245. doi: 10.3390/plants11091245
    [21]
    QIU Z L, WEN Z, YANG K, et al. Comparative proteomics profiling illuminates the fruitlet abscission mechanism of sweet cherry as induced by embryo abortion[J]. International Journal of Molecular Sciences,2020,21(4):1200. doi: 10.3390/ijms21041200
    [22]
    XU P P, CHEN H Y, CAI W M. Transcription factor cdf4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in arabidopsis[J]. EMBO reports,2020,21(7):e48967. doi: 10.15252/embr.201948967
    [23]
    PATHARKAR O R, WALKER J C. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence[J]. Plant Science,2019,284:25−29. doi: 10.1016/j.plantsci.2019.03.016
    [24]
    YUAN Y Y, WEI J, XING S J, et al. Sulfur dioxide (SO2) accumulation in postharvest grape: The role of pedicels of four different varieties[J]. Postharvest Biology and Technology,2022,190:111953. doi: 10.1016/j.postharvbio.2022.111953
    [25]
    WU P W, XIN F Y, XU H J L, et al. Chitosan inhibits postharvest berry abscission of ‘kyoho’ table grapes by affecting the structure of abscission zone, cell wall degrading enzymes and SO2 permeation[J]. Postharvest Biology and Technology,2021,176:111507. doi: 10.1016/j.postharvbio.2021.111507
    [26]
    高登涛, 李秋利, 魏志峰, 等. 植物对二氧化硫胁迫反应与应答机制研究进展[J]. 广东农业科学,2016,43(11):27−35. [GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences,2016,43(11):27−35.

    GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences, 2016, 43(11): 27-35.
    [27]
    HU K D, TANG J, ZHAO D L, et al. Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and no signaling pathways[J]. Biologia Plantarum,2014,58(4):676−680. doi: 10.1007/s10535-014-0440-7
    [28]
    TAYLOR J S, REID D M, RICHARD P P. Mutual antagonism of sulfur dioxide and abscisic acid in their effect on stomatal aperture in broad bean (Vicia faba L.) epidermal strips 1[J]. Plant Physiology,1981,68(6):1504−1507. doi: 10.1104/pp.68.6.1504
    [29]
    WEI A L, XIN X J, WANG Y S, et al. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in hemerocallis fulva[J]. Ecotoxicology and Environmental Safety,2013,98:41−45. doi: 10.1016/j.ecoenv.2013.09.029
    [30]
    LI L H, XUE M Z, YI H L. Uncovering microrna-mediated response to SO2 stress in arabidopsis thaliana by deep sequencing[J]. Journal of Hazardous Materials,2016,316:178−185. doi: 10.1016/j.jhazmat.2016.05.014
    [31]
    ZHANG X C, LI D, WANG Y, et al. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in postharvest strawberry fruit[J]. Postharvest Biology and Technology,2022,192:112021. doi: 10.1016/j.postharvbio.2022.112021
    [32]
    WEI A L, FU B C, WANG Y S, et al. Involvement of no and ros in sulfur dioxide induced guard cells apoptosis in tagetes erecta[J]. Ecotoxicology and Environmental Safety,2015,114:198−203. doi: 10.1016/j.ecoenv.2015.01.024
    [33]
    葛毅强, 张维一, 叶强. SO2对鲜食葡萄一些酶活性营养成分及膜透性的影响[J]. 新疆农业大学学报,1997(2):48−52. [GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University,1997(2):48−52.

    GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University, 1997(2): 48-52.
    [34]
    孔秋莲, 修德仁, 胡文玉, 等. 葡萄贮藏中SO2伤害与膜脂过氧化的关系[J]. 果树学报,2008,25(3):322−326. [KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science,2008,25(3):322−326.

    KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science, 2008, 25(3): 322-326.
    [35]
    HUANG C X, MA J M, LIANG C, et al. Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues[J]. Bioresource Technology,2018,263:17−24. doi: 10.1016/j.biortech.2018.04.104
    [36]
    张蕊, 李来庚. 植物细胞壁信号研究进展[J]. 植物生理学报,2018,54(8):1254−1262. [ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications,2018,54(8):1254−1262.

    ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications, 2018, 54(8): 1254-1262.
    [37]
    LEE YUREE. More than cell wall hydrolysis: Orchestration of cellular dynamics for organ separation[J]. Current Opinion in Plant Biology,2019,51:37−43. doi: 10.1016/j.pbi.2019.03.009
    [38]
    陈发河, 吴光斌, 冯作山, 等. 葡萄贮藏过程中落粒与离区酶活性变化及植物生长调节物质的关系[J]. 植物生理与分子生物学学报,2003,29(2):133−140. [CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):133−140.

    CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(2): 133-140.
    [39]
    GIRAUD E, IVANOVA A, GORDON C, et al. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses[J]. Plant, Cell & Environment,2012,35(2):405−417.
    [40]
    ZHAO J, YI H L. Genome-wide transcriptome analysis of arabidopsis response to sulfur dioxide fumigation[J]. Molecular Genetics and Genomics,2014,289(5):989−999. doi: 10.1007/s00438-014-0870-0
    [41]
    TRIPATHI S K, SANE A P, NATH P, et al. Organ abscission in plants: Understanding the process through transgenic approaches[M]. Research Signpost, 2008: 155-180.
    [42]
    KUHN N, SERRANO A, ABELLO C, et al. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission[J]. BMC Plant Biology,2016,16(1):234. doi: 10.1186/s12870-016-0914-1
    [43]
    GULFISHAN M, J A, BHAT T A, et al. Chapter 16-plant senescence and organ abscission[M]. Senescence signalling and control in plants. New York; Academic Press. 2018: 255−272.
    [44]
    PATHARKAR O R, WALKER J C. Advances in abscission signaling[J]. Journal of Experimental Botany,2017,69(4):733−740.
    [45]
    杨盛迪, 孟祥轩, 郭大龙, 等. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学,2022,55(11):2214−2226. [YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica,2022,55(11):2214−2226.

    YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
    [46]
    葛毅强, 陈颖. SO2对葡萄采后呼吸强度及内源激素的影响[J]. 园艺学报,1997,24(2):17−21. [GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica,1997,24(2):17−21.

    GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica, 1997, 24(2): 17-21.
    [47]
    XIA Z, SUN K, WANG M, et al. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and cat-mediated H2O2 scavenging[J]. PLoS One,2012,7(5):e37383. doi: 10.1371/journal.pone.0037383
    [48]
    李秋雨, 曾凯芳, 姚世响. 活性氧在果实成熟和衰老中的作用及调控机制[J]. 食品与发酵工业,2020,46:271−276. [LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. Food and Fermentation Industries,2020,46:271−276.

    LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. ] Food and Fermentation Industries, 2020, 46: 271-276.
    [49]
    徐松华. 逆境条件下植物体内活性氧代谢研究进展[J]. 安徽农学通报,2021,27(21):29−32. [XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin,2021,27(21):29−32.

    XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin, 2021, 27(21): 29-32.
    [50]
    LI L H, YI H L. Effect of sulfur dioxide on ros production, gene expression and antioxidant enzyme activity in arabidopsis plants[J]. Plant Physiology and Biochemistry,2012,58:46−53. doi: 10.1016/j.plaphy.2012.06.009
    [51]
    崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报,2017,33(3):220−226. [CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology,2017,33(3):220−226.

    CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226.
    [52]
    ZHANG Z, WU Z H, YUAN Y Y, et al. Sulfur dioxide mitigates oxidative damage by modulating hydrogen peroxide homeostasis in postharvest table grapes[J]. Postharvest Biology and Technology,2022,188:111877. doi: 10.1016/j.postharvbio.2022.111877
    [53]
    孔秋莲, 胡文玉, 修德仁, 等. 葡萄贮藏中SO2伤害与活性氧代谢的关系[J]. 沈阳农业大学学报,2001,32(6):449−451. [KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J]. Journal of Shenyang Agricultural University,2001,32(6):449−451.

    KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J], Journal of Shenyang Agricultural University, 2001, 32(6): 449-451.
    [54]
    TIAN S P, QIN G Z, LI B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology,2013,82(6):593−602. doi: 10.1007/s11103-013-0035-2
    [55]
    FORLANI S, MASIERO S, MIZZOTTI C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens[J]. Journal of Experimental Botany,2019,70(11):2993−3006. doi: 10.1093/jxb/erz112
    [56]
    MAJDA M, ROBERT S. The role of auxin in cell wall expansion[J]. International Journal of Molecular Sciences,2018,19(4):951. doi: 10.3390/ijms19040951

Catalog

    Article Metrics

    Article views (122) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return