ZHANG Zihao, XU Shuo, PANG Geyu, et al. In Vitro Digestive Properties of Zein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110187.
Citation: ZHANG Zihao, XU Shuo, PANG Geyu, et al. In Vitro Digestive Properties of Zein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110187.

In Vitro Digestive Properties of Zein Nanoparticles

More Information
  • Received Date: November 16, 2022
  • Available Online: May 08, 2023
  • To investigate changes in the physicochemical properties of nano delivery systems that were fabricated by native biomacromolecules during digestion, curcumin and zein were separately used as the core and shell materials in this study, and curcumin-loaded zein nanoparticles (CZNPs) were prepared by the way of inverse solvent precipitation. Firstly, the physicochemical properties of CZNPs were characterized by various spectroscopy and electron microscopy methods. Then, the digestive properties of CZNPs in an in vitro simulated digestion model were investigated. Results showed that the encapsulation efficiency of Cur (99%±1%) was the largest when the mass ratio of Cur and zein was 1:40. Moreover, the obtained CZNPs were spherical nanoparticles with an average particle size of 118.6±0.7 nm and zeta potential of 19.9±3.79 mV. Slight adhesion between CZNPs was also noticed. During in vitro simulated gastric digestion, with the increase of digestive time, significant aggregation occurred and the average particle size of CZNPs increased to 8000 nm. Meanwhile, part of zein degraded into amino acids and Cur was released slightly. During the subsequent simulated intestinal digestion, the aggregation of CZNPs reduced with time. However, zein kept stable without continue degradation and the release of Cur didn’t change significantly. Therefore, zein nanoparticles may be an effective oral delivery system with possible applications in the development of functional foods and orally administered drugs.
  • [1]
    QIU N, DU X Y, JI J B, et al. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin[J]. Drug Development and Industrial Pharmacy,2021,47(6):1−41.
    [2]
    STOHS S J, CHEN O, RAY S D, et al. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review[J]. Molecules,2020,25(6):1397. doi: 10.3390/molecules25061397
    [3]
    ZIELINSKA A, ALVES H, MARQUES V, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects[J]. Medicina,2020,56(7):336. doi: 10.3390/medicina56070336
    [4]
    吕思伊, 卢琪, 潘思轶. 包封姜黄素的果胶-核桃蛋白复合物乳液稳定性及体外消化[J]. 食品科学,2021,42(8):1−9. [LÜ S Y, LU Q, PAN S Y. Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science,2021,42(8):1−9. doi: 10.7506/spkx1002-6630-20200406-069

    LÜ S Y, LU Q, PAN S Y . Stability and in vitro digestion of pectin-walnut proteins stabilized emulsions encapsulating curcumin[J]. Food Science, 2021, 42(8): 1-9. doi: 10.7506/spkx1002-6630-20200406-069
    [5]
    ELBIALY N S, ABOUSHOUSHAH S F, MOHAMED N. Bioinspired synthesis of protein/polysaccharide-decorated folate as a nanocarrier of curcumin to potentiate cancer therapy[J]. International Journal of Pharmaceutics,2021,5(2):613.
    [6]
    DARIA Z, SERGEY C, ANASTASIA K, et al. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,20(10):651.
    [7]
    SUN Y, PANG H W, LI Z, et al. Nanofibers-anchored small molecule hybrid plant protein materials with improved antibacterial activity[J]. Industrial Crops & Products,2022,1(10):185.
    [8]
    XU P C, QIAN Y X, WANG R, et al. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles[J]. Food Chemistry,2022,1(9):387.
    [9]
    GUARDIOLA-PONCE L V, SUDKAMP A, YIN L, et al. Characterization of zein extracted from wet distillers grains[J]. Trans-actions of the Asbe,2020,63(4):1059−1069. doi: 10.13031/trans.13764
    [10]
    WANG Y, PADUA G W. Nanoscale characterization of zein self-assembly[J]. Langmuir: The ACS Journal of Surfaces and Colloids,2012,28(5):2429−35. doi: 10.1021/la204204j
    [11]
    BROTONS-CANTO A, GONZALEZ-NAVARRO C J, GURREA J. Zein nanoparticles improve the oral bioavailability of resveratrol in humans[J]. Journal of Drug Delivery Science and Technology,2020,57(C):101704.
    [12]
    PATEL A R, VELIKOV K P. Zein as a source of functional colloidal nano- and microstructures[J]. Current Opinion in Colloid & Interface Science,2014,19(5):450−458.
    [13]
    董潇, 黄国清, 肖军霞. 玉米醇溶蛋白-葡萄糖美拉德反应产物制备姜黄素纳米颗粒[J]. 中国食品学报,2021,21(3):118−127. [DONG X, HUANG G Q, XIAO J X. Preparation of curcumin nanoparticles by zein-glucose maillard reaction products[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(3):118−127.

    DONG X, HUANG G Q, XIAO J X. Preparation of curcumin nanoparticles by zein-glucose maillard reaction products[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3): 118−127.
    [14]
    FU T J, ABBOTT U R, HATZOS C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-A comparative study[J]. Journal of Agricultural and Food Chemistry,2002,50(24):7154−7160. doi: 10.1021/jf020599h
    [15]
    CHEN S, HAN Y H, HUANG J Y, et al. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin[J]. ACS Applied Materials & Interfaces,2019,11(18):16922−16933.
    [16]
    LU J, XIE L, WU A X, et al. Delivery of silybin using a zein-pullulan nanocomplex: Fabrication, characterization, in vitro release properties and antioxidant capacity[J]. Colloids and Surfaces B: Biointerfaces,2022(9):217.
    [17]
    周浓, 余志良, 李承勇. 玉米醇溶蛋白-番石榴黄酮复合纳米颗粒的制备及其抗氧化活性[J]. 食品科学,2021,42(3):186−193. [ZHOU N, YU Z L, LI C Y. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science,2021,42(3):186−193. doi: 10.7506/spkx1002-6630-20200225-270

    ZHOU N, YU Z L, LI C Y. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science, 2021, 42(3): 186-193. doi: 10.7506/spkx1002-6630-20200225-270
    [18]
    CHEN X, ZOU L Q, LIU W, et al. Potential of excipient emulsions for improving quercetin bioaccessibility and antioxidant activity: An in vitro study[J]. Journal of Agricultural and Food Chemistry,2016,64(18):3653. doi: 10.1021/acs.jafc.6b01056
    [19]
    ZOU L Q, ZHENG B J, LIU W, et al. Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin[J]. Journal of Functional Foods,2015,15:72−83. doi: 10.1016/j.jff.2015.02.044
    [20]
    邵金良, 黎其万, 董宝生, 等. 茚三酮比色法测定茶叶中游离氨基酸总量[J]. 中国食品添加剂,2008(2):162−165. [SHAO J L, LI Q W, DONG B S, et al. Determination of total free-am ino acid in tea by Nihydrin colorimetry[J]. Chia Food Additives,2008(2):162−165. doi: 10.3969/j.issn.1006-2513.2008.02.039

    SHAO J L, LI Q W, DONG B S, et al. Determination of total free-am ino acid in tea by Nihydrin colorimetry[J]. Chia Food Additives, 2008(2): 162-165. doi: 10.3969/j.issn.1006-2513.2008.02.039
    [21]
    李晓晖, 黄文娟, 周伟, 等. 反溶剂法制备姜黄素-高粱醇溶蛋白复合颗粒及其特性分析[J]. 食品科学,2018,39(6):7−12. [LI X H, HUANG W J, ZHOU W, et al. Preparation and characterization of kafirin microparticles encapsulating curcum by anti-solvent method[J]. Food Science,2018,39(6):7−12. doi: 10.7506/spkx1002-6630-201806002

    LI X H, HUANG W J, ZHOU W, et al. Preparation and characterization of kafirin microparticles encapsulating curcum by anti-solvent method[J]. Food Science, 2018, 39(6): 7-12. doi: 10.7506/spkx1002-6630-201806002
    [22]
    ZHANG H, JIANG L Y, TONG M G, et al. Encapsulation of curcumin using fucoidan stabilized zein nanoparticles: Preparation, characterization, and in vitro release performance[J]. Journal of Molecular Liquids,2021,369:115586.
    [23]
    PATEL A, HU Y C, TIWARI J K, et al. Synthesis and characterisation of zein-curcumin colloidal particles[J]. Soft Matter,2010,6(24):6192−6199. doi: 10.1039/c0sm00800a
    [24]
    邓罡, 李晓佩, 王际辉. 酸性溶液中姜黄素的紫外-可见和荧光发射光谱研究[J]. 光谱学与光谱分析,2018,38(S1):257−258. [DENG G, LI X P, WANG J H. UV-Vis and fluorescence emission spectra of curcumin in acidic solutions[J]. Spectroscopy and Spectral Analtsis,2018,38(S1):257−258.

    DENG G, LI X P, WANG J H. UV-Vis and fluorescence emission spectra of curcumin in acidic solutions[J]. Spectroscopy and Spectral Analtsis, 2018, 38(S1): 257-258.
    [25]
    饶震红, 王明安, 张莉. 基于光谱分析技术的肉桂醛与玉米醇溶蛋白作用机理的研究[J]. 光谱学与光谱分析,2019,39(6):1940−1946. [RAO Z H, WANG M A, ZHANG L. Study on the mechanism of interaction between cinnamaldehyde and zein based on spectral analysis technology[J]. Spectroscopy and Spectral Analtsis,2019,39(6):1940−1946.

    RAO Z H, WANG M A, ZHANG L. Study on the mechanism of interaction between cinnamaldehyde and zein based on spectral analysis technology[J]. Spectroscopy and Spectral Analtsis, 2019, 39(6): 1940-1946.
    [26]
    LIU F G, MA C C, MCCLEMENTS D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids,2017,63:625−634. doi: 10.1016/j.foodhyd.2016.09.041
    [27]
    林嘉璐, 吴敏, 欧阳, 等. 不同类型壁材微胶囊的胃肠道模拟消化研究概述[J]. 轻工科技,2020,36(6):4−5, 9. [LIN J L, WU M, OU Y, et al. Summary of gastrointestinal simulated digestion of different types of wall material microcapsules[J]. Light Industry Science and Technolog,2020,36(6):4−5, 9.

    LIN J L, WU M, OU Y, et al. Summary of gastrointestinal simulated digestion of different types of wall material microcapsules[J]. Light Industry Science and Technolog, 2020, 36(6): 4-5, 9.
    [28]
    YADAV D, KUMAR N. Nanonization of curcumin by antisolvent precipitation: Process development, characterization, freeze drying and stability performance[J]. International Journal of Pharmaceutics,2014,477(1−2):564−577. doi: 10.1016/j.ijpharm.2014.10.070
    [29]
    CERQUEIRA M A, SOUZA B W S, TEIXEIRA J A. et al. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: A comparative study[J]. Food Hydrocolloids,2011,27(1):175−184.
    [30]
    LUO Y C, TENG Z, WANG Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3[J]. Journal of Agricultural and Food Chemistry,2012,60(3):836−43. doi: 10.1021/jf204194z
    [31]
    张凤雪, 文娥, 李柯翱, 等. 维药制剂药渣中蛋白质及游离氨基酸的含量测定[J]. 世界中医药,2016,11(2):327−329. [ZHANG F X, WEN E, LI K A, et al. Determination of protein and free amino acid within the residues of uygur medicine[J]. World Chinese Medicine,2016,11(2):327−329. doi: 10.3969/j.issn.1673-7202.2016.02.039

    ZHANG F X, WEN E, LI K A, et al. Determination of protein and free amino acid within the residues of uygur medicine[J]. World Chinese Medicine, 2016, 11(2): 327-329. doi: 10.3969/j.issn.1673-7202.2016.02.039
    [32]
    HU K, MCCLEMENTS D J. Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method[J]. Food Research International,2014,64:329−335. doi: 10.1016/j.foodres.2014.07.004
    [33]
    王永辉, 杨晓泉, 王金梅, 等. 蛋白水解物及多糖负载姜黄素制备纳米颗粒及其稳定性[J]农业工程学报, 2015(10): 296−302

    WANG Y H, YANG X Q, WANG J M, et al. Preparation of curcumin nanoparticles by protein hydrolysates and polysaccharids and its stabilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(10): 296−302
    [34]
    赖婵娟, 吴磊燕, 胡林芳, 等. 不同溶剂中玉米醇溶蛋白的聚集状态和结构性质[J]. 现代食品科技,2021,37(6):115−123. [LAI C J, WU L Y, HU L F, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology,2021,37(6):115−123. doi: 10.13982/j.mfst.1673-9078.2021.6.0258

    LAI C J, WU L Y, HU L F, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology, 2021, 37(6): 115-123. doi: 10.13982/j.mfst.1673-9078.2021.6.0258
    [35]
    许辰琪, 袁芳, 高彦祥. 玉米醇溶蛋白作为传递载体研究进展[J]. 中国食品添加剂,2015,7:156−161. [XU C Q, YUAN F, GAO Y X. Research progress of carrier material zein in delivery system[J]. Chia Food Additives,2015,7:156−161. doi: 10.3969/j.issn.1006-2513.2015.07.018

    XU C Q, YUAN F, GAO Y X. Research progress of carrier material zein in delivery system[J]. Chia Food Additives, 2015, 7, 156-161. doi: 10.3969/j.issn.1006-2513.2015.07.018
    [36]
    ZOU L, ZHENG B, ZHANG R, et al. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles[J]. Food Research International,2016,81(3):74−82.
    [37]
    胡玲, 张裕英, 高长有. 聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J]. 化学进展,2009,21(6):1254−1267. [HU L, ZHANG Y Y, GAO C Y. Influence of structures and properties of polymer nanoparticles on their cellular uptake and cell functions[J]. Progress in Chemistry,2009,21(6):1254−1267.

    HU L, ZHANG Y Y, GAO C Y. Influence of structures and properties of polymer nanoparticles on their cellular uptake and cell functions[J]. Progress in Chemistry, 2009, 21(6): 1254-1267.
    [38]
    ZHANG D C, JIANG F Y, LIANG J H, et al. Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties[J]. Colloids and Surfaces B:Biointerfaces,2021,204:111827. doi: 10.1016/j.colsurfb.2021.111827
    [39]
    唐文婷, 孙玥, 孙庆杰, 等. 兼具抗氧化及抗菌活性的玉米醇溶蛋白肽制备及其乳化特性[J]. 食品科学,2022,43(11):57−66. [TANG W T, SUN Y, SUN Q J. et al. Preparation and emulsifying properties of zein peptides with antioxidant and antibacterial activities[J]. Food Science,2022,43(11):57−66. doi: 10.7506/spkx1002-6630-20210504-024

    TANG W T, SUN Y, SUN Q J . et al. Preparation and emulsifying properties of zein peptides with antioxidant and antibacterial activities[J]. Food Science, 2022, 43(11): 57-66. doi: 10.7506/spkx1002-6630-20210504-024
    [40]
    芦鑫, 胡东彬, 贾聪, 等. 体外模拟消化芝麻蛋白产生多肽的抗氧化性分析[J]. 中国油脂,2020,45(5):63−66, 81. [LU X, HU D B, JIA C, et al. Antioxidant analysis of peptides produced by in vitro simulated digestion of sesame protein[J]. China Oils and Fats,2020,45(5):63−66, 81. doi: 10.12166/j.zgyz.1003-7969/2020.05.013

    LU X, HU D B, JIA C, et al. Antioxidant analysis of peptides produced by in vitro simulated digestion of sesame protein[J]. China Oils and Fats, 2020, 45(5): 63-66, 81. doi: 10.12166/j.zgyz.1003-7969/2020.05.013
  • Cited by

    Periodical cited type(4)

    1. 冯云,王丹丹,张扬,周玮,张晓强. 通氮蒸馏-自动电位滴定法测定水果制品中二氧化硫残留量. 食品安全导刊. 2023(32): 53-58 .
    2. 金晓兰,蒋才斌,莫凤萍,黄韵霖. 八角中二氧化硫残留量检测方法探索. 食品安全导刊. 2022(19): 82-85 .
    3. 赵金利,林泽珊,黎颖欣,徐婷,陈桂云,林虹,孟繁龙,王宇. 全自动蒸馏-离子色谱法测定香辛料中二氧化硫残留量. 食品科技. 2022(10): 293-298 .
    4. 袁秀丽. 电位滴定法测定泡菜中亚硝酸钠含量. 食品安全导刊. 2022(36): 34-36 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return