GU Dandan, HOU Jingyu, ZHANG Jinxiu, et al. Comparative Analysis of Characteristics and in Vitro Biological Activities of Cordyceps militaris Polysaccharide Prepared by Two Methods[J]. Science and Technology of Food Industry, 2023, 44(18): 76−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110183.
Citation: GU Dandan, HOU Jingyu, ZHANG Jinxiu, et al. Comparative Analysis of Characteristics and in Vitro Biological Activities of Cordyceps militaris Polysaccharide Prepared by Two Methods[J]. Science and Technology of Food Industry, 2023, 44(18): 76−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110183.

Comparative Analysis of Characteristics and in Vitro Biological Activities of Cordyceps militaris Polysaccharide Prepared by Two Methods

More Information
  • Received Date: November 16, 2022
  • Available Online: July 12, 2023
  • Cordyceps militaris polysaccharides from the fermentation broth were prepared via chitosan flocculation and water extraction and alcohol precipitation methods to obtain the flocculated polysaccharide (XDT) and alcohol precipitation polysaccharide (CDT) respectively. The extraction yields, component content, average particle sizes and solubility of XDT and CDT were comparatively investigated. The microstructures, functional groups and spatial conformations were characterized by scanning electron microscopy, Fourier infrared spectroscopy and Congo red assay. The antioxidant activity was evaluated by scavenging ability of DPPH, superoxide anion and hydroxyl radical. The hypoglycemic activity was estimated by α-glucosidase inhibitory ability, and the antitumor cell activity was analyzed by inhibition of HepG2 cell proliferation. The results showed a yield of 3.58% for XDT, 1.91 times that of CDT. CDT and XDT exhibited different microstructures under electron microscopy, and similar absorption patterns under infrared spectrum, while XDT contained more triple helix structures than CDT. XDT displayed smaller average particle sizes but a faster dissolution rate than CDT. In vitro antioxidant tests showed that XDT exhibited significantly higher scavenging ability of DPPH, superoxide anion and hydroxyl radical than CDT at the same concentration. There was no significant difference between the XDT and CDT in the inhibition of α-glucosidase at low concentration, but XDT showed significantly higher inhibition than CDT as the increase of concentration. XDT was found to be a stronger inhibitor of HepG2 cells proliferation than CDT at the same treatment concentration. In summary, XDT showed higher yields, smaller average particle sizes, faster solubility, and higher antioxidant, hypoglycemic, and antitumor activity in vitro.
  • [1]
    董彩虹, 李文佳, 李增智, 等. 我国虫草产业发展现状、问题及展望——虫草产业发展金湖宣言[J]. 菌物学报,2016,35(1):1−15. [DONG C H, LI W J, LI Z Z, et al. Cordyceps industry in China: current status, challenges and perspectives—Jinhu declaration for cordyceps industry development[J]. Mycosystema,2016,35(1):1−15.

    DONG C H, LI W J, LI Z Z, et al. Cordyceps industry in China: current status, challenges and perspectives—Jinhu declaration for cordyceps industry development[J]. Mycosystema, 2016, 35(1): 1−15.
    [2]
    LIU Y, GUO Z J, ZHOU X W. Chinese cordyceps: Bioactive components, antitumor effects and underlying mechanism: A review[J]. Molecules,2022,27(19):6576. doi: 10.3390/molecules27196576
    [3]
    左锦辉, 贡晓燕, 董银卯, 等. 蛹虫草的活性成分和药理作用及其应用研究进展[J]. 食品科学,2018,39(21):330−339. [ZUO J H, GONG X Y, DONG Y M, et al. Research achievements in bioactive components, pharmacological effects and applications of Cordyceps militaris[J]. Food Science,2018,39(21):330−339.

    ZUO J H, GONG X Y, DONG Y M, et al. Research achievements in bioactive components, pharmacological effects and applications of Cordyceps militaris[J]. Food Science, 2018, 39(21): 330−339.
    [4]
    XU J, SHEN R, JIAO Z, et al. Current advancements in antitumor properties and mechanisms of medicinal components in edible mushrooms[J]. Nutrients,2022,14(13):2622. doi: 10.3390/nu14132622
    [5]
    PHULL A R, AHMED M, PARK H J. Cordyceps militaris as a bio-functional food source: Pharmacological potential, anti-inflammatory actions and related molecular mechanisms[J]. Microorganisms,2022,10(2):405. doi: 10.3390/microorganisms10020405
    [6]
    YAN J K, WANG W Q, WU J Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review[J]. Journal of Functional Food,2014(6):33−47.
    [7]
    MIAO M, YU W Q, LI Y, et al. Structural elucidation and activities of Cordyceps militaris-derived polysaccharides: A review[J]. Frontiers in Nutrition,2022(9):898674.
    [8]
    LEE C T, HUANG K S, SHAW J F, et al. Trends in the immunomodulatory effects of Cordyceps militaris: Total extracts, polysaccharides and cordycepin[J]. Frontiers in Pharmacology,2020(11):575704.
    [9]
    赵炳杰, 郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展[J]. 中国生物工程杂志,2022,42(Z1):146−159. [ZHAO B J, GUO Y B. Advances in extraction, purification and bioactivity of polysaccharides from edible fungi[J]. China Biotechnology,2022,42(Z1):146−159.

    ZHAO B J, GUO Y B. Advances in extraction, purification and bioactivity of polysaccharides from edible fungi[J]. China Biotechnology, 2022, 42(Z1): 146−159.
    [10]
    PENG W, LI D, DAI K, et al. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications[J]. International Journal of Biological Macromolecules,2022,208:400−408. doi: 10.1016/j.ijbiomac.2022.03.002
    [11]
    DUTTA J, TRIPATHI S, DUTTA P K. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: A systematic study needs for food applications[J]. Food Science and Technology International,2012,18(1):3−34. doi: 10.1177/1082013211399195
    [12]
    CHEN Q, QI Y, JIANG Y, et al. Progress in research of chitosan chemical modification technologies and their applications[J]. Marine Drugs,2022,20(8):536. doi: 10.3390/md20080536
    [13]
    许昕, 侯静宇, 王立安. 壳聚糖絮凝法纯化牛蒡多糖的工艺优化[J]. 食品工业科技,2019,40(24):178−184. [XU X, HOU J Y, WANG L A. Optimization of purification process of polysaccharide from Arctium lappa L. by chitosan flocculation[J]. Science and Technology of Food Industry,2019,40(24):178−184.

    XU X, HOU J Y, WANG L A. Optimization of purification process of polysaccharide from Arctium lappa l.by chitosan flocculation[J]. Science and Technology of Food Industry, 2019, 40(24): 178−184.
    [14]
    侯静宇, 国利超, 鲁玉佳, 等. 两种不同方法制备的黑木耳多糖性质比较[J]. 菌物学报,2020,39(7):1429−1436. [HOU J Y, GUO LC, LU Y J, et al. Optimization of preparation method and property analysis of Auricularia heimuer polysaccharide[J]. Mycosystema,2020,39(7):1429−1436.

    HOU J Y, GUO LC, LU Y J, et al. Optimization of preparation method and property analysis of Auricularia heimuer polysaccharide[J]. Mycosystema, 2020, 39(7): 1429−1436
    [15]
    王学军, 徐恒, 程敏, 等. 以壳聚糖为絮凝剂的杜仲叶水提液澄清工艺优化[J]. 国际药学研究杂志,2018,45(2):150−153, 162. [WANG X J, XU H, CHENG M, et al. Optimization technology of the clarification process for the water-extracted solution of Folium Eucommiae with chitosan flocculant[J]. Journal of International Pharmaceutical Research,2018,45(2):150−153, 162.

    WANG X J, XU H, CHENG M, et al. Optimization technology of the clarification process for the water-extracted solution of Folium Eucommiae with chitosan flocculant[J]. Journal of International Pharmaceutical Research, 2018, 45(2): 150−153+162.
    [16]
    谢红旗, 刘东波, 肖深根, 等. 壳聚糖絮凝纯化香菇多糖的研究[J]. 天然产物研究与开发,2010,22(1):77−80, 125. [XIE H Q, LIU D B, XIAO S G et al. Study on purification of lentinan by flocculation of chitosan[J]. Research and Development of Natural Products,2010,22(1):77−80, 125.

    XIE H Q, LIU D B, XIAO S G et al. Study on purification of lentinan by flocculation of chitosan[J]. Research and Development of Natural Products, 2010, 22(1): 77−80+125.
    [17]
    满宁, 孙盼, 韩伟. 灰树花子实体多糖的微波提取及絮凝纯化工艺[J]. 南京工业大学学报(自然科学版),2015,37(6):99−104. [MAN N, SUN P, HAN W. Application of microwave−flocculation technology in extraction and purification of polysaccharides from Grifola frondose[J]. Journal of Nanjing Tech University (Natural Science Edition),2015,37(6):99−104.

    MAN N, SUN P, HAN W. Application of microwave−flocculation technology in extraction and purification of polysaccharides from Grifola frondose[J]. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37(6): 99−104.
    [18]
    罗文锋, 韩伟. 金针菇多糖的壳聚糖絮凝工艺优化[J]. 食用菌学报,2015,22(2):68−71. [LUO W F, HAN W. Optimization of chitosan-based flocculation and purification of polysaccharides from aqueous extracts of Flammulina velutipes[J]. Acta Edulis Fungi,2015,22(2):68−71.

    LUO W F, HAN W. Optimization of chitosan-based flocculation and purification of polysaccharides from aqueous extracts of flammulina velutipes[J]. Acta Edulis Fungi, 2015, 22(2): 68−71.
    [19]
    侯静宇, 赵佳启, 张金秀, 等. 壳聚糖絮凝蛹虫草菌丝体多糖工艺优化及其失活动力学分析[J]. 菌物学报,2020,39(12):2346−2354. [HOU J Y, ZHAO J Q, ZHANG J X, et al. Optimization of chitosan flocculation of Cordyceps militaris polysaccharide and analysis of inactivation mechanics of chitosan[J]. Mycosystema,2020,39(12):2346−2354.

    HOU J Y, ZHAO J Q, ZHANG J X, et al. Optimization of chitosan flocculation of Cordyceps militaris polysaccharide and analysis of inactivation mechanics of chitosan[J]. Mycosystema, 2020, 39(12): 2346−2354.
    [20]
    郑婷婷, 严亮, 张文杰, 等. 水碱连续提取黄皮疣柄牛肝菌粗多糖的理化性质及抗氧化活性研究[J]. 食品工业科技,2020,41(15):84−89. [ZHENG T T, YAN L, ZHANG E J, et al. Physicochemical properties and antioxidant activity of water-alkai continuous extraction of crude polysaccharides from Leccinellum crocipodium (letellier.) watliag[J]. Science and Technology of Food Industry,2020,41(15):84−89.

    ZHENG T T, YAN L, ZHANG E J, et al. Physicochemical properties and antioxidant activity of water-alkai continuous extraction of crude polysaccharides from Leccinellum crocipodium (letellier. ) watliag[J]. Science and Technology of Food Industry, 2020, 41(15): 84−89.
    [21]
    中华人民共和国国家卫生和计划生育委员会. GB/T 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016

    China’s National Health and Family Planning Commission. GB/T 5009.4−2016. National food safety standard Determination of ash in foods[S]. Beijing: Standards Press of China, 2016.
    [22]
    秦利鸿, 曹建波, 易伟松. 绿茶多糖的扫描电镜制样新方法及原子力显微镜观察[J]. 电子显微学报,2009,28(2):162−167. [QING L H, CAO J B, YI W S. A new method for scanning electron microscope samples of polysaccharides distilled from green tea and observation of ultrafine structure of them with atomic force microscope[J]. Journal of Chinese Electron Microscopy Society,2009,28(2):162−167.

    QING L H, CAO J B, YI W S. A new method for scanning electron microscope samples of polysaccharides distilled from green tea and observation of ultrafine structure of them with atomic force microscope[J]. Journal of Chinese Electron Microscopy Society, 2009, 28(2): 162−167.
    [23]
    贾俊强, 沈健, 陈炼, 等. 蛹虫草多糖的酶法修饰及其抗氧化活性[J]. 食品科学,2013,34(1):114−120. [JIA J Q, SHEN J, CHEN L, et al. Enzymatic modification and antioxidant activity of polysaccharide from Cordyceps militaris fruit bodies[J]. Science and Technology of Food Industry,2013,34(1):114−120.

    JIA J Q, SHEN J, CHEN L, et al. Enzymatic modification and antioxidant activity of polysaccharide from Cordyceps militaris fruit bodies[J]. Science and Technology of Food Industry, 2013, 34(1): 114−120.
    [24]
    杨生兵. 灰树花子实体和发酵菌丝体成分及多糖比较研究[D]. 无锡: 江南大学, 2012

    YANG S B. Comparative study on components and polysaccharides of fruiting body and fermented mycelium of grifola frondosa[D]. Wuxi: Jiangnan University, 2012.
    [25]
    国利超, 吕建华, 姚澜, 等. 朱红栓菌提取物抗氧化、抗肿瘤活性评价及相关化学成分分析[J]. 菌物学报,2018,37(6):772−781. [GUO L C, LÜ J H, YAO L, et al. Antioxidant and anti-tumor activities and main chemical constituent analysis of Trametes cinnabarina fruiting body extract[J]. Mycosystema,2018,37(6):772−781.

    GUO L C, LV J H, YAO L, et al. Antioxidant and anti-tumor activities and main chemical constituent analysis of Trametes cinnabarina fruiting body extract[J]. Mycosystema, 2018, 37(6): 772−781.
    [26]
    GOVINDAN S, JOHNSON E, CHRISTOPHER J, et al. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2[J]. Experimental and Toxicologic Pathology,2016,68(6):329−334. doi: 10.1016/j.etp.2016.04.001
    [27]
    NAJAFABAD A M, JAMEI R. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L.) in both fresh and dried samples[J]. Avicenna Journal of Phytomedicine,2014,4(4):343−353.
    [28]
    袁毅桦. 基于壳聚糖与海藻酸钠的改性聚合物的制备结构与性能研究[D]. 广州: 华南理工大学, 2012

    YUAN Y H. Preparation, structure and properties of modified polymers based on chitosan and sodium alginate[D]. Guangzhou: South China University of Technology, 2012.
    [29]
    陈薛, 左欣欣, 徐安安, 等. 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学,2022,42(6):806−818. [CHEN X, ZUO X X, XU A A, et al. Comparative study on the physicochemical characteristics and antioxidant activities of polysaccharides in different tea cultivars[J]. Journal of Tea Science,2022,42(6):806−818.

    CHEN X, ZUO X X, Xu A A, et al. Comparative study on the physicochemical characteristics and antioxidant activities of polysaccharides in different tea cultivars[J]. Journal of Tea Science, 2022, 42(6): 806-818.
    [30]
    王志, 谢婷, 李冬芝, 等. 酵母三股螺旋结构β-葡聚糖测定方法研究[J]. 现代食品科技,2014,30(11):213−217, 222. [WANG Z, XIE T, LI D Z, et al. Method to determine the triple-helical β-glucan content in yeast[J]. Modern Food Science and Technology,2014,30(11):213−217, 222.

    WANG Z, XIE T, LI D Z, et al. Method to determine the triple-helical β-glucan content in yeast[J]. Modern Food Science and Technology, 2014, 30(11): 213-217+222.
    [31]
    YANG X, WEI S, LU X, et al. A neutral polysaccharide with a triple helix structure from ginger: Characterization and immunomodulatory activity[J]. Food Chemistry,2021,350:129261. doi: 10.1016/j.foodchem.2021.129261
    [32]
    MENG Y, ZHANG H, HU N, et al. Construction of silver nanoparticles by the triple helical polysaccharide from black fungus and the antibacterial activities[J]. International Journal of Biological Macromolecules,2021,182:1170−1178. doi: 10.1016/j.ijbiomac.2021.04.130
    [33]
    REN Y P, LIU S X. Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa Willd.)[J]. Biochemical and Biophysical Research Communications,2022,552(2):286−291.
    [34]
    杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science,2021,42(23):355−363.

    YANG Y J, LIU J Y, TAN Y, et al. Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J]. Food Science, 2021, 42(23): 355-363.

Catalog

    Article Metrics

    Article views (120) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return