LENG Jingjing, TU Wei, ZHAO Fan, et al. Bone Density Improvement Function and Safety Evaluation of the Malugu Capsule[J]. Science and Technology of Food Industry, 2023, 44(21): 379−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110137.
Citation: LENG Jingjing, TU Wei, ZHAO Fan, et al. Bone Density Improvement Function and Safety Evaluation of the Malugu Capsule[J]. Science and Technology of Food Industry, 2023, 44(21): 379−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110137.

Bone Density Improvement Function and Safety Evaluation of the Malugu Capsule

More Information
  • Received Date: November 13, 2022
  • Available Online: September 05, 2023
  • In order to evaluate the bone density improvement function and safety of the Malugu capsule, rats were divided into sham surgery group, model control group (oophorectomy model), high-dose calcium carbonate group (positive control), and groups with different doses of Malugu capsule (200, 400 and 1200 mg/kg·bw) by 90 days of gavage administration. The bone mineral density of the left femur and the calcium content of the right femur was measured to evaluate the performance of the Malugu capsule in increasing bone density. The acute toxicity test of the Malugu capsule at the dose of 15 g/kg·bw was carried out. Moreover, the genotoxicity test and 4-week feeding test of rats were also performed to evaluate the safety of the Malugu capsule. The results showed that there was no significant difference in body weight of rats among the groups of Malugu capsule treatment compared with the model control group (P>0.05). The bone mineral density of the left femur in the three doses of Malugu capsule groups were 0.6651, 0.6560 and 0.6605 g/cm3, respectively, which was significantly higher than that of 0.6307 g/cm3 (P<0.05) in the model control group. The safety evaluation results showed that the acute oral MTD of the Malugu capsule for rats was higher than 15 g/kg·bw, which could be classified as non-toxic. Moreover, the result of the genotoxicity test of the Malugu capsule was negative. Finally, no abnormal changes in health status, biochemical, hematological indicators, and organ tissue morphology of rats were observed in the 4-week feeding tests. In conclusion, the Malugu capsule has the function of increasing bone mineral density without safety issues.
  • [1]
    LUBIS A M T, SIAGIAN C, WONGGOKUSUMA E, et al. Comparison of glucosamine-chondroitin sulfate with and without methylsulfonylmethane in grade I-II knee osteoarthritis: A double blind randomized controlled trial[J]. Acta Medica Indonesiana,2017,49(2):105−111.
    [2]
    REIJMERS R M, TROEBERG L, LORD M S, et al. Editorial: Proteoglycans and glycosaminoglycan modification in immune regulation and inflammation[J]. Frontiers in Immunology,2020,11:595867. doi: 10.3389/fimmu.2020.595867
    [3]
    STELLAVATO A, RESTAINO O F, VASSALLO V, et al. Chondroitin sulfate in usa dietary supplements in comparison to pharma grade products: Analytical fingerprint and potential anti-inflammatory effect on human osteoartritic chondrocytes and synoviocytes[J]. Pharmaceutics,2021,13(5):737. doi: 10.3390/pharmaceutics13050737
    [4]
    BOUGATEF H, GHLISSI Z, KALLEL R, et al. Chondroitin/dermatan sulfate purified from corb ( Sciaena umbra) skin and bone: In vivo assessment of anticoagulant activity[J]. International Journal of Biological Macromolecules,2020,164:131−139. doi: 10.1016/j.ijbiomac.2020.07.096
    [5]
    ZHANG X, LIU H, LIN L, et al. Synthesis of fucosylated chondroitin sulfate nonasaccharide as a novel anticoagulant targeting intrinsic factor xase complex[J]. Angewandte Chemie,2018,130(39):13062−13067. doi: 10.1002/ange.201807546
    [6]
    QI S S, SHAO M L, SUN Z, et al. Chondroitin sulfate alleviates diabetic osteoporosis and repairs bone microstructure via anti-oxidation, anti-inflammation, and regulating bone metabolism[J]. Frontiers in Endocrinology,2021,12:759843. doi: 10.3389/fendo.2021.759843
    [7]
    KITAZAWA K, NADANAKA S, KADOMATSU K, et al. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis[J]. Commun Biol,2021,4(1):114. doi: 10.1038/s42003-020-01618-5
    [8]
    FENBO M, SIJING L, RUIZ-ORTEGA L I, et al. Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111217. doi: 10.1016/j.msec.2020.111217
    [9]
    SODHI H, PANITCH A. Glycosaminoglycans in tissue engineering: A review[J]. Biomolecules,2021,11(1):29.
    [10]
    高洁, 赵玲, 马丽曼, 等. 鱼源硫酸软骨素的研究进展[J]. 食品安全质量检测学报,2020,11(22):8166−8172. [GAO J, ZHAO L, MA L M, et al. Research progress of fish-derived chondroitin sulfate[J]. Journal of Food Safety & Quality,2020,11(22):8166−8172. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.005

    GAO J, ZHAO L, MA L M, et al. Research progress of fish-derived chondroitin sulfate[J]. Journal of Food Safety & Quality, 2020, 1122): 81668172. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.22.005
    [11]
    REN C, GONG W, LI F, et al. Pilose antler aqueous extract promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells by stimulating the BMP-2/Smad1, 5/Runx2 signaling pathway[J]. Chin J Nat Med,2019,17(10):756−767.
    [12]
    LI Y, TAN Z, ZHANG J, et al. Physical and chemical properties, biosafety evaluation, and effects of nano natural deer bone meal on bone marrow mesenchymal stem cells[J]. Frontiers in Bioengineering and Biotechnology,2022,10:891765. doi: 10.3389/fbioe.2022.891765
    [13]
    郭晓琳, 苏凤艳, 胡薇, 等. 梅花鹿骨粉营养成分和抗骨质疏松活性研究[J]. 经济动物学报,2017,21(3):150−154 doi: 10.13326/j.jea.2017.1179

    GUO X L, SU F Y, HU W, et al. Nutritional composition and anti osteoporosis activity of sika deer bone meal[J]. Journal of Economic Animal,2017,21(3):150−154. doi: 10.13326/j.jea.2017.1179
    [14]
    王旭东, 赵宏宇, 邸琳, 等. 淫羊藿骨碎补联合骨营养补剂对骨质疏松大鼠的影响[J]. 食品工业科技,2021,42(13):338−344 doi: 10.13386/j.issn1002-0306.2020080004

    WANG X D, ZHAO H Y, DI L, et al. Effects of epimedium rhizoma drynariae combined with bone nutritional tonic on rats with osteoporosis[J]. Science and Technology of Food Industry,2021,42(13):338−344. doi: 10.13386/j.issn1002-0306.2020080004
    [15]
    XUE C, PAN W, LU X, et al. Effects of compound deer bone extract on osteoporosis model mice and intestinal microflora[J]. Journal of Food Biochemistry,2021,45(6):e13740.
    [16]
    国家市场监督管理总局. 保健食品功能评价方法(2020年版)[EB/OL]. (2020-11-24). https://www.samr. gov.cn/hd/zjdc/202011/t20201124_323851.html

    State administration for market regulation. Methods for functional evaluation of health food (2020 edition) [EB/OL]. (2020-11-24). https://www.samr. gov.cn/hd/zjdc/202011/t202 01124_323851.html.
    [17]
    肖登, 杨霖, 雷中杰, 等. 不同强度脉冲电磁场对去卵巢大鼠股骨骨密度的影响[J]. 激光杂志,2011,32(5):61−62 doi: 10.3969/j.issn.0253-2743.2011.05.037

    XIAO D, YANG L, LEI Z J, et al. Effect of pulsed electromagnetic fields of different intensity on bone mineral density of femur in ovariectomized rats[J]. Laser Journal,2011,32(5):61−62. doi: 10.3969/j.issn.0253-2743.2011.05.037
    [18]
    国家市场监督管理总局. 保健食品及其原料安全性毒理学检验与评价技术指导原则(2020年版)[EB/OL]. (2020-10-31).https://gkml.samr.gov.cn/nsjg/tssps/202010/t20201031_322810.html

    State administration for market regulation. Technical guidelines for toxicological testing and evaluation of health food and its raw materials safety (2020 Edition) [EB/OL]. (2020-11-24). https://gkml.samr.gov.cn/nsjg/tssps/202010/t20201031 _322810.html.
    [19]
    苏辉, 闫炳翰, 王若冲, 等. 补肾壮骨方干预去卵巢骨质疏松模型大 鼠骨代谢及骨密度的变化[J]. 中国组织工程研究,2023,27(28):4507−4512 doi: 10.12307/2023.538

    SU H, YAN B H, WANG R C, et al. Effect of Bushen Zhuanggu Fang on bone metabolism and bone mineral density in rats with ovariectomized osteoporosis[J]. Chinese Journal of Tissue Engineering Research,2023,27(28):4507−4512. doi: 10.12307/2023.538
    [20]
    何胜利, 杨宁, 常东军. 仙灵骨葆胶囊联合盐酸氨基葡萄糖治疗膝骨关节炎临床研究[J]. 中国药业,2022,31(19):84−87 doi: 10.3969/j.issn.1006-4931.2022.19.018

    HE S L, YANG N, CHANG D J. Clinical study of xianling gubao capsules combined with glucosamine hydrochloride in the treatment of knee osteoarthritis[J]. China Pharmaceuticals,2022,31(19):84−87. doi: 10.3969/j.issn.1006-4931.2022.19.018
    [21]
    LIN E C, CHEN S, CHEN L, et al. Glucosamine interferes with myelopoiesis and enhances the immunosuppressive activity of myeloid-derived suppressor cells[J]. Frontiers in Nutrition,2021,8:762363. doi: 10.3389/fnut.2021.762363
    [22]
    马鹏程, 王钢, 李平顺. 骨痨愈康丸联合盐酸氨基葡萄糖片治疗寒湿痹阻型膝骨关节炎临床观察[J]. 中华中医药杂志,2020,35(11):5902−5904

    MA P C, WANG G, LI P S. Clinical observation on the Gulao Yukang pills combined with glucosamine hydrochloride tablets in treating knee osteoarthritis with cold-dampness arthralgia[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2020,35(11):5902−5904.
    [23]
    李宇, 王伟, 邱裕佳. 补肾壮筋汤联合盐酸氨基葡萄糖对大鼠膝软骨细胞增殖及凋亡影响的研究[J]. 中国骨质疏松杂志,2020,26(1):25−30 doi: 10.3969/j.issn.1006-7108.2020.01.007

    LI Y, WANG W, QIU Y J. Effect of the reinforcing kidney and strengthening tendon decoction combined with glucosamine hydrochloride on the proliferation and apoptosis of knee chondrocytes in rats[J]. Chinese Journal of Osteoporosis,2020,26(1):25−30. doi: 10.3969/j.issn.1006-7108.2020.01.007
    [24]
    颜晨燕, 王梨萍, 屈鑫, 等. 鲨鱼硫酸软骨素及胶原蛋白复方改善小鼠骨关节炎作用研究[J]. 海洋渔业,2020,42(6):740−750 doi: 10.3969/j.issn.1004-2490.2020.06.010

    YAN C Y, WANG L P, QU X, et al. Shark chondroitin sulfate and collagen compound study on improving osteoarthritis in mice[J]. Marine Fisheries,2020,42(6):740−750. doi: 10.3969/j.issn.1004-2490.2020.06.010
    [25]
    FANG L, LIN L, LV Y, et al. The mechanism of aerobic exercise combined with glucosamine therapy and circUNK in improving knee osteoarthritis in rabbits[J]. Life Sciences,2021,275:119375. doi: 10.1016/j.lfs.2021.119375
    [26]
    HE Y, SUN M, WANG J, et al. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis[J]. Acta Biomaterialia,2022,151:512−527. doi: 10.1016/j.actbio.2022.07.052
    [27]
    WU G, MA F, XUE Y, et al. Chondroitin sulfate zinc with antibacterial properties and anti-inflammatory effects for skin wound healing[J]. Carbohydrate Polymers,2022,278:118996. doi: 10.1016/j.carbpol.2021.118996
    [28]
    XU L, MA F, LEUNG F K L, et al. Chitosan-strontium chondroitin sulfate scaffolds for reconstruction of bone defects in aged rats[J]. Carbohydrate Polymers,2021,273:118532. doi: 10.1016/j.carbpol.2021.118532
    [29]
    于浩, 张海悦, 李震, 等. 鹿骨双酶法酶解工艺的研究[J]. 食品研究与开发,2016,37(9):82−86 doi: 10.3969/j.issn.1005-6521.2016.09.019

    YU H, ZANG H Y, LI Z, et al. The research of the enzymolysis of deer bone meal using double-enzyme hydrolysis[J]. Food Research And Development,2016,37(9):82−86. doi: 10.3969/j.issn.1005-6521.2016.09.019
    [30]
    庞广昌, 陈庆森, 杨晓宁. 动物骨头的利用研究[J]. 食品科学,1998(4):34−36 doi: 10.3321/j.issn:1002-6630.1998.04.013

    PANG G C, CHEN Q S, YANG X N. Study on utilization of animal bones[J]. Food Science,1998(4):34−36. doi: 10.3321/j.issn:1002-6630.1998.04.013
    [31]
    赵玉红, 高天. 鹿骨胶原蛋白特性的研究[J]. 食品科学,2008(7):43−46 doi: 10.3321/j.issn:1002-6630.2008.07.003

    ZHAO Y H, GAO T. Characteristics of collagen from deer bone[J]. Food Science,2008(7):43−46. doi: 10.3321/j.issn:1002-6630.2008.07.003
    [32]
    雷晓利, 于晓风, 曲绍春, 等. 鹿骨胶的初步药理研究[J]. 人参研究,2001, (2):31−33 doi: 10.3969/j.issn.1671-1521.2001.02.010

    LEI X L, YU X F, QU S C, et al. Preliminary pharmacological study of deer bone glue[J]. Ginseng Research,2001, (2):31−33. doi: 10.3969/j.issn.1671-1521.2001.02.010
    [33]
    李玲. 鹿骨钙在治疗继发性骨质疏松中的应用[J]. 医药前言,2015,5(11):36−37

    LI L. Deer bone calcium application in the treatment of secondary osteoporosis[J]. Medical Frontier,2015,5(11):36−37.
    [34]
    张朝阳. 鹿骨壮骨泡腾片的研制[J]. 现代养生,2015(6):240

    ZANG C Y. Development of deer bone effervescent tablets[J]. Health Protection and Promotion,2015(6):240.
  • Cited by

    Periodical cited type(6)

    1. 孙小玉,陈丽,高瑞芳,周群明,康嘉桐,于慧,靳敏. 香青兰总黄酮灌胃对博来霉素诱导大鼠肺纤维化的抑制作用及其机制. 山东医药. 2024(23): 41-46 .
    2. 侯润庚,丁骁,杨力颖,张曼,张颖君,赵平. 西印度醋栗枝叶提取物的α-葡萄糖苷酶抑制活性及安全性评价. 食品工业科技. 2023(07): 252-259 . 本站查看
    3. 李想,刘庆,高晨,周红兵,常虹,王佳,白万富,石松利. 苦杏仁苷对肾纤维化大鼠的保护作用及其机制. 医药导报. 2022(09): 1282-1289 .
    4. 郝瑞敏,贺晓慧,朱丽,谢婧妍,张秀凤. 蒙古扁桃在内蒙古的潜在地理分布及未来适生区预测. 湖北农业科学. 2022(16): 121-126 .
    5. 吴桐,周红兵,王佳,常虹,白万富,权博文,郝海梅,白迎春,石松利. 蒙古扁桃不同极性部位对肝纤维化大鼠的保护作用及机制研究. 食品工业科技. 2021(14): 348-355 . 本站查看
    6. 李倩,白万富,周红兵,郝海梅,李想,常虹,石松利. 蒙古扁桃油对肺纤维化大鼠的保护作用研究. 中药药理与临床. 2021(04): 90-96 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (76) PDF downloads (18) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return