Citation: | ZOU Ping, XU Ying, CHEN Wentao, et al. Optimization of Extraction Process and Purification of Flavonoids from Peony Seed Meal by Membrane Method[J]. Science and Technology of Food Industry, 2023, 44(18): 258−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100241. |
[1] |
李若敏, 张焕新, 盘赛昆等. 牡丹籽粕蛋白提取工艺优化和功能性质分析[J]. 食品工业科技,2023,44(8):197−204. [LI R M, ZHANG H X, PAN S K et al. Optimization of extraction process and functional properties of peony seed meal protein[J]. Science and Technology of Food Industry,2023,44(8):197−204. doi: 10.13386/j.issn1002-0306.2022050251
LI R M, ZHANG H X, PAN S K et al. Optimization of extraction process and functional properties of peony seed meal protein[J]. Science and Technology of Food Industry, 2023, 44(8): 197-204. doi: 10.13386/j.issn1002-0306.2022050251
|
[2] |
ZHANG P, SONG Y W, WANG H L, et al. Optimization of flavonoid extraction from Salix babylonica L. Buds, and the antioxidant and antibacterial activities of the extract[J]. Molecules,2022,27(17):5695−5695. doi: 10.3390/molecules27175695
|
[3] |
徐莹, 邹平, 徐荣. 响应面优化橄榄仁红皮黄酮提取及组成分析[J/OL]. 食品与发酵工业: 1−10. https://doi.org/10.13995/j.cnki.11-1802/ts.032376.
XU Y, ZOU P, XU R. Optimization of extraction and composition analysis of flavonoids from red skin of olive kernel by response surface methodology[J/OL]. Food and Fermentation Industry: 1−10. https://doi.org/10.13995/j.cnki.11-1802/ts.032376.
|
[4] |
LU J, HUANG Z, LIU Y, et al. The optimization of extraction process, antioxidant, whitening and antibacterial effects of fengdan peony flavonoids[J]. Molecules,2022,27(2):506−506. doi: 10.3390/molecules27020506
|
[5] |
JI Y W, RAO G W, XIE G F. Ultrasound-assisted aqueous two-phase extraction of total flavonoids from Tremella fuciformis and antioxidant activity of extracted flavonoids[J]. Preparative Biochemistry & Biotechnology,2022,52(9):1060−1068.
|
[6] |
QUIROS T P, MONTENEGRO-LANDIVAR M F, REIG M, et al. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing[J]. Journal of Environmental Management,2022,307(1):114555.
|
[7] |
KHEMAKHEM I, GARGOURI O D, ALI D, et al. Oleuropein rich extract from olive leaves by combining microfiltration, ultrafiltration and nanofiltration[J]. Separation and Purification Technology,2017,172:310−317. doi: 10.1016/j.seppur.2016.08.003
|
[8] |
SEKARAN S, ROY A, THANGAVELU L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts-A review on its molecular mode of action[J]. Chemico-Biological Interactions,2022,355:109831. doi: 10.1016/j.cbi.2022.109831
|
[9] |
ASATI V, DEEPA P R, SHARMA P K. Desert legume prosopis cineraria as a novel source of antioxidant flavonoids/isoflavonoids: Biochemical characterization of edible pods for potential functional food development[J]. Biochemistry and Biophysics Reports,2022,29:101210. doi: 10.1016/j.bbrep.2022.101210
|
[10] |
BATTIROLA L C, ANDRADE P F, MARSON G V, et al. Cellulose acetate/cellulose nanofiber membranes for whey and fruit juice microfiltration[J]. Cellulose,2017,24(12):5593−5604. doi: 10.1007/s10570-017-1510-8
|
[11] |
MANSOR E S, ALI E A, SHABAN A M. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment[J]. Chemical Engineering Journal,2021,407:127175. doi: 10.1016/j.cej.2020.127175
|
[12] |
FENG S S, ZHONG Z, WANG Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications[J]. Journal of Membrane Science,2018,549:332−349. doi: 10.1016/j.memsci.2017.12.032
|
[13] |
MERTENS M, VAN DYCK T, VAN GOETHEM C, et al. Development of a polyvinylidene difluoride membrane for nanofiltration[J]. Journal of Membrane Science,2018,557:24−29. doi: 10.1016/j.memsci.2018.04.020
|
[14] |
YANG J J, ZHANG Z, PANG W, et al. Polyamidoamine dendrimers functionalized magnetic carbon nanotubes as an efficient adsorbent for the separation of flavonoids from plant extraction[J]. Separation and Purification Technology,2019,227:115710. doi: 10.1016/j.seppur.2019.115710
|
[15] |
SMITH C A, WANT E J, O'MAILLE G, et al. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Analytical Chemistry,2006,78(3):779−787. doi: 10.1021/ac051437y
|
[16] |
ZIELIŃSKA D, ZIELIŃSKI H. Antioxidant activity of flavone C-glucosides determined by updated analytical strategies[J]. Food Chemistry,2011,124(2):672−678. doi: 10.1016/j.foodchem.2010.06.051
|
[17] |
李学玲, 许苑南, 龙佳敏, 等. 黄果茄总黄酮的提取工艺优化与体外抗氧化活性研究[J]. 食品研究与开发,2020,41(23):143−149. [LI X L, XU Y N, LONG J M, et al. Optimization of extraction process and antioxidant activity in vitro of total flavonoids from solanum nightingale[J]. Food Research and Development,2020,41(23):143−149.
LI X L, XU Y N, LONG J M, et al. Optimization of extraction process and antioxidant activity in vitro of total flavonoids from solanum nightingale[J] Food Research and Development, 2020, 41 (23): 143-149.
|
[18] |
LIU F, OOI V E C, CHANG S T. Free radical scavenging activities of mushroom polysaccharide extracts[J]. Life Sciences,1997,60(10):763−771. doi: 10.1016/S0024-3205(97)00004-0
|
[19] |
常虹, 王爽, 周家华, 等. 体外模拟消化对鲜切苹果皮渣黄酮类物质及其还原力的影响[J]. 食品工业科技,2022,43(20):39−44. [CHANG H, WANG S, ZHOU J H, et al. Effects of simulated digestion in vitro on flavonoids and their reducing power in fresh cut apple peel residue[J]. Science and Technology of Food Industry,2022,43(20):39−44.
CHANG H, WANG S, ZHOU J H, et al. Effects of simulated digestion in vitro on flavonoids and their reducing power in fresh cut apple peel residue[J] Science and Technology of Food Industry, 2022, 43 (20): 39-44.
|
[20] |
WANG Y, GAO Y, DING H, et al. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity[J]. Food Chemistry,2017,218:152−158. doi: 10.1016/j.foodchem.2016.09.058
|
[21] |
陈洪生, 国慧, 刁静静, 等. 绿豆皮中黄酮类化合物的抗氧化活性及其结构分析[J]. 食品工业科技,2022,43(2):35−41. [CHEN H S, GUO H, DIAO J J, et al. Antioxidant activity and structure analysis of flavonoids from mung bean peel[J]. Science and Technology of Food Industry,2022,43(2):35−41.
CHEN H S, GUO H, DIAO J J, et al. Antioxidant activity and structure analysis of flavonoids from mung bean peel[J] Science and Technology of Food Industry, 2022, 43 (2): 35-41.
|
[22] |
YOSHIOKA T, KOTAKA K, NAKAGAWA K, et al. Molecular dynamics simulation study of polyamide membrane structures and ro/fo water permeation properties[J]. Membranes,2018,8(4):127−127. doi: 10.3390/membranes8040127
|
[23] |
DONG G, NAGASAWA H, YU L, et al. Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route[J]. Journal of Membrane Science,2020,597(C):117758.
|
[24] |
HAN J, MENG S, DONG Y, et al. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes[J]. Water Research,2013,47(1):197−208. doi: 10.1016/j.watres.2012.09.055
|
[25] |
ZHANG Q, ZHANG F, THAKUR K, et al. Molecular mechanism of anti-cancerous potential of morin extracted from mulberry in Hela cells[J]. Food and Chemical Toxicology,2018,112:466−475. doi: 10.1016/j.fct.2017.07.002
|
[26] |
JARINYAPORN N, SUPAPORN W, PATCHAREEWAN P. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice[J]. Journal of Physiology and Biochemistry,2016,72(2):269−280. doi: 10.1007/s13105-016-0477-5
|
[27] |
FENG T Z, JIANBO Q, ZHOU S. Preparation of nanocomposite aromatic polyamide reverse osmosis membranes by in-situ polymerization of bis(triethoxysilyl)ethane (BTESE)[J]. Journal of Membrane Science,2022,661:120914. doi: 10.1016/j.memsci.2022.120914
|
[28] |
王帅. 白皮杉醇及甲氧基衍生物抗氧化活性的理论研究[D]. 西安: 陕西师范大学, 2015.
WANG S. Theoretical study on the antioxidant activity of paclitaxel and methoxy derivatives[D]. Xi'an: Shaanxi Normal University, 2015.
|
[29] |
ORTEGA V J, COBO A, ORTEGA M E, et al. Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (Prunus avium L.)[J]. Journal of Wood Chemistry and Technology,2021,41(2-3):104−117. doi: 10.1080/02773813.2021.1910712
|
[30] |
ZHANG X X, SHI Q Q, JI D, et al. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China[J]. Food Research International,2017,97:141−148. doi: 10.1016/j.foodres.2017.03.018
|