HE Sichen, CHEN Lingli, CHEN Hui, et al. Effect of Different Protein Removal Methods on the Structure and Antioxidant Activity of the Cyclocarya paliurus Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(16): 81−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100170.
Citation: HE Sichen, CHEN Lingli, CHEN Hui, et al. Effect of Different Protein Removal Methods on the Structure and Antioxidant Activity of the Cyclocarya paliurus Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(16): 81−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100170.

Effect of Different Protein Removal Methods on the Structure and Antioxidant Activity of the Cyclocarya paliurus Polysaccharides

More Information
  • Received Date: October 17, 2022
  • Available Online: June 22, 2023
  • Removal of proteins is essential for the purification of Cyclocarya paliurus polysaccharides (CPP), which have strong hypoglycemic and antioxidant activities. In order to explore the most suitable way of removing protein from the polysaccharides, three methods (HCl, TCA and NaCl) were used to treat the crude polysaccharides, and the structure and composition of the polysaccharides obtained by the three deproteinization methods were analyzed by high performance liquid gel chromatography, ion chromatography and Fourier infrared spectroscopy, and their antioxidant activity was determined by measuring the scavenging rate of DPPH radicals, ABTS+ radicals and hydroxyl radicals. The results showed that the protein removal rate of the HCl method was 73.48% and the polysaccharide residue rate was 74.86% at pH2. The protein removal rate of the TCA method was 79.88% and the polysaccharide residue rate was 81.78% at a TCA volume fraction of 2%. The protein removal rate of the NaCl method was 47.90% and the polysaccharide residue rate was 82.51% at a NaCl volume fraction of 7%. The molecular weight distribution of the polysaccharides treated by the three methods could be roughly divided into three parts, 500~750 kDa, 100~130 kDa and 30~40 kDa, but their proportions were different. The polysaccharides treated by the TCA method accounted for the largest percentage of 100~130 kDa compared with the three, and the polysaccharides treated by the NaCl method accounted for the largest percentage of 30~40 kDa. All three polysaccharides consisted of eight monosaccharides, but their molar ratios were different. Of the three deproteinization method, the HCl-treated polysaccharide had the highest content of arabinose, galactose and glucose, the TCA-treated polysaccharide had a higher content of glyoxylate, and the NaCl-treated polysaccharide had the highest content of rhamnose, xylose and mannose. The scavenging ability of the three polysaccharides against free radicals at the same concentration was compared, and the antioxidant ability of the polysaccharides treated with TCA method was the strongest, followed by HCl method and the weakest was polysaccharides treated by NaCl method. As shown by the results, different methods of protein removal have different effects on the structure and activity of CPP, among which TCA method is a better way to remove protein from CPP.
  • [1]
    罗丹, 陈丹, 白曦晨, 等. 富硒青钱柳-黄精复方对高尿酸血症小鼠降尿酸作用研究[J]. 今日药学,2021,31(12):909−913,917. [GUO D, CHEN D, BAI X C, et al. Effect of selenium-enriched Cyclocarya paliurus and Polygonatum sibiricum compounds on lowering uric acid in mice with hyperuricemia[J]. Pharmacy Today,2021,31(12):909−913,917.

    GUO D, CHEN D, BAI X, et al. Effect of selenium-enriched Cyclocarya paliurus and Polygonatum sibiricum compounds on lowering uric acid in mice with hyperuricemia[J]. Pharmacy Today, 2021, 31(12): 909-913, 917.
    [2]
    袁丛军, 刘娜, 谢涛, 等. 青钱柳叶片活性成分及其影响因素研究进展[J]. 贵州林业科技,2021,49(3):48−53,64. [YUAN C J, LIU N, XIE T, et al. Research progress on the active components and influencing factors of Cyclocarya paliurus leaves[J]. Guizhou Forestry Science and Technology,2021,49(3):48−53,64.

    YUAN C, LIU N, XIE T, et al. Research progress on the active components and influencing factors of Cyclocarya paliurus leaves[J]. Guizhou Forestry Science and Technology, 2021, 49(3): 48-53, 64.
    [3]
    LI Q, HU J, NIE Q, et al. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration[J]. Science China Life Sciences,2021,64(1):117−132. doi: 10.1007/s11427-019-1647-6
    [4]
    TANG W, LIN L, XIE J, et al. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus[J]. Carbohydrate Polymers,2016,151:305−312. doi: 10.1016/j.carbpol.2016.05.078
    [5]
    HAN Y, OUYANG K, LI J, et al. Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells[J]. International Journal of Biological Macromolecules,2020,159:108−116. doi: 10.1016/j.ijbiomac.2020.04.265
    [6]
    WU T, SHEN M, GUO X, et al. Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways[J]. International Journal of Biological Macromolecules,2020,160:164−174. doi: 10.1016/j.ijbiomac.2020.05.187
    [7]
    何美佳, 刘晓, 唐翠翠, 等. 多糖脱蛋白方法的研究进展[J]. 中国海洋药物,2019,38(3):82−86. [HE M J, LIU X, TANG C C, et al. Research progress on the methods for deproteinization of polysaccharide[J]. Chinese Journal of Marine Drugs,2019,38(3):82−86.

    HE M, LIU X, TANG C, et al. Research progress on the methods for deproteinization of polysaccharide[J]. Chinese Journal of Marine Drugs, 2019, 38(3): 82-86.
    [8]
    赵师师, 高旭红, 常君, 等. 石榴皮多糖的三氯乙酸法脱蛋白工艺研究[J]. 广州化工,2015,43(17):64−66. [ZHAO S S, GAO X H, CHANG J, et al. Study on the deproteinization of the crude polysaccharide from pomegranate peel with trichloroacetic acid method[J]. Guangzhou Chemical Industry,2015,43(17):64−66.

    ZHAO S, GAO X, CHANG J, et al. Study on the deproteinization of the crude polysaccharide from pomegranate peel with trichloroacetic acid method[J]. Guangzhou Chemical Industry, 2015, 43(17): 64-66.
    [9]
    陈越, 宋振康, 张海悦. 三氯乙酸法脱除龙葵果多糖中蛋白质的工艺优化[J]. 食品与发酵工业,2020,46(24):198−203. [CHEN Y, SONG Z K, ZHANG H Y. Study on optimization of response surface for the removement of protein from polysaccharide of Solanum nigrum fruit by chloroacetic acid method[J]. Food and Fermentation Industries,2020,46(24):198−203.

    CHEN Y, SONG Z, ZHANG H. Study on optimization of response surface for the removement of protein from polysaccharide of Solanum nigrum fruit by chloroacetic acid method[J]. Food and Fermentation Industries, 2020, 46(24): 198-203.
    [10]
    ZENG X, LI P, CHEN X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:867−876. doi: 10.1016/j.ijbiomac.2018.12.222
    [11]
    MOHAMMED J K, MAHDI A A, AHMED M I, et al. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit[J]. International Journal of Biological Macromolecules,2019,155:919−926.
    [12]
    谢建华. 青钱柳多糖的分离纯化与结构解析及其生物活性研究[D]. 南昌: 南昌大学, 2007

    XIE J H. Studies on the purification, structure and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja[D]. Nanchang: Nanchang University, 2007.
    [13]
    ZHAO M, HAN Y, LI J, et al. Structural characterization and antioxidant activity of an acetylated Cyclocarya paliurus polysaccharide (Ac-CPP0.1)[J]. International Journal of Biological Macromolecules,2021,171:112−122. doi: 10.1016/j.ijbiomac.2020.12.201
    [14]
    CHENG H, HUANG G. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide[J]. International Journal of Biological Macromolecules,2018,114:415−419. doi: 10.1016/j.ijbiomac.2018.03.156
    [15]
    DUBIOS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances[J]. Analytical Chemistry,1956,28:250−256. doi: 10.1021/ac60110a033
    [16]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248−254. doi: 10.1016/0003-2697(76)90527-3
    [17]
    王新嘉, 雷国风, 翟志军, 等. 平菇多糖中蛋白质脱除方法的比较[J]. 食品研究与开发,2017,38(5):8. [WANG X J, LEI G F, ZHAI Z J, et al. Comparison of methods for removing protein from polysaccharide of Pleurotus ostreatus[J]. Food Research and Development,2017,38(5):8.

    WANG X, LEI G, ZHAI Z, et al. Comparison of methods for removing protein from polysaccharide of Pleurotus ostreatus[J]. Food Research and Development, 2017, 38(5): 8.
    [18]
    ZHANG Y, HAN Y, HE J, et al. Digestive properties and effects of Chimonanthus nitens Oliv polysaccharides on antioxidant effects in vitro and in immunocompromised mice[J]. International Journal of Biological Macromolecules,2021,185:306−316. doi: 10.1016/j.ijbiomac.2021.06.114
    [19]
    钱朋智, 张梅娟, 郭宏文, 等. 甜菜渣功能糖的制备及单糖组成分析[J]. 中国食品添加剂,2022,33(11):199−206. [QIAN P Z, ZHANG M J, GUO H W, et al. Preparation of functional sugar from beet pulp and analysis of its monosaccharide composition[J]. China Food Additives,2022,33(11):199−206.

    QIAN P, ZHANG M, GUO H, et al. Preparation of functional sugar from beet pulp and analysis of its monosaccharide composition[J]. China Food Additives, 2022, 33(11): 199-206.
    [20]
    WANG J, LI Z, YANG X, et al. The antitumor role of a newly discovered α-D-glucan from Holotrichia diomphalia Bates as a selective blocker of aldolase A[J]. Carbohydrate Polymers,2021,255:117532. doi: 10.1016/j.carbpol.2020.117532
    [21]
    CHEN H, ZENG J, WANG B, et al. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods[J]. Carbohydrate Polymers,2021,266(3):118149.
    [22]
    WANG L, LUO Y, WU Y, et al. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea[J]. Food Chemistry,2018,264:189−198. doi: 10.1016/j.foodchem.2018.05.035
    [23]
    CHEN F, HUANG G, YANG Z, et al. Antioxidant activity of Momordica charantia polysaccharide and its derivatives[J]. International Journal of Biological Macromolecules,2019,138:673−680. doi: 10.1016/j.ijbiomac.2019.07.129
    [24]
    陈新仁, 吴琼, 郑成. 银耳多糖的分子修饰及抗氧化作用的研究[J]. 安徽农学通报,2013,19(17):17−18,38. [CHEN X R, WU Q, ZHENG C. Molecular modification of polysaccharides and antioxidant effect of Silver Fungus[J]. Anhui Agricultural Science Bulletin,2013,19(17):17−18,38.

    CHEN X, WU Q, ZHENG C. Molecular modification of polysaccharides and antioxidant effect of Silver Fungus[J]. Anhui Agricultural Science Bulletin, 2013, 19(17): 17-18, 38.
    [25]
    HUANG G, CHEN Y, WANG X. Extraction and deproteinization of pumpkin polysaccharide[J]. International Journal of Food Science Nutrition,2021,62(6):568−71.
    [26]
    李洁, 陈琳, 刘海棠, 等. 银条菜粗多糖脱蛋白的方法研究[J]. 天津科技大学学报,2022,37(1):18−22,27. [LI J, CHEN L, LIU H T, et al. Study of deproteinization method of crude polysaccharides from Stachys floridana Schuttl. ex Benth[J]. Journal of Tianjin University of Science & Technology,2022,37(1):18−22,27.

    LI J, CHEN L, LIU H, et al. Study of deproteinization method of crude polysaccharides from Stachys floridana Schuttl. ex Benth[J]. Journal of Tianjin University of Science & Technology, 2022, 37(1): 18-22, 27.
    [27]
    CHEN L, HUANG G, HU J. Preparation, deproteinization, characterisation, and antioxidant activity of polysaccharide from cucumber (Cucumis saticus L.)[J]. International Journal of Biological Macromolecules,2018,108:408−411. doi: 10.1016/j.ijbiomac.2017.12.034
    [28]
    HUANG G, SHU S, CAI T, et al. Preparation and deproteinization of garlic polysaccharide[J]. International Journal of Food Science Nutrition,2012,63(6):739−41. doi: 10.3109/09637486.2011.652599
    [29]
    程芬芬, 刘春, 杨晓泉. 大豆胰蛋白酶抑制剂的制备及性质[J]. 食品科学,2017,38(3):37−44. [CHENG F F, LIU C, YANG X Q, et al. Preparation and properties of soybean trypsin inhibitor[J]. Food Science,2017,38(3):37−44.

    CHENG F, LIU C, YANG X, et al. Preparation and properties of soybean trypsin inhibitor[J]. Food Science, 2017, 38(3): 37-44.
    [30]
    薛丽洁, 马丽苹, 焦昆鹏, 等. 挤压对山药中非淀粉多糖理化性质和生物活性的影响[J]. 中国食品添加剂,2022,33(1):164−172. [XUE L J, MA L P, JIAO K P, et al. Effect of extrusion on physicochemical properties and biological activity of non-starch polysaccharides from Chinese yam[J]. China Food Additives,2022,33(1):164−172. doi: 10.19804/j.issn1006-2513.2022.01.027

    XUE L, MA L, JIAO K, et al. Effect of extrusion on physicochemical properties and biological activity of non-starch polysaccharides from Chinese yam[J]. China Food Additives, 2022, 33(1): 164-172. doi: 10.19804/j.issn1006-2513.2022.01.027
    [31]
    申超群. 树蝴蝶多糖结构分析及生物活性研究[D]. 广州: 华南理工大学, 2017

    SHEN C Q. Study on structure and bioactivities of polysaccharides from Lobaria kurokauae Yoshim[D]. Guangzhou: South China University of Technology, 2017.
    [32]
    AN Q, YE X, HAN Y, et al. Structure analysis of polysaccharides purified from Cyclocarya paliurus with DEAE-Cellulose and its antioxidant activity in RAW264.7 cells[J]. International Journal of Biological Macromolecules,2020,157:604−615. doi: 10.1016/j.ijbiomac.2019.11.212
    [33]
    胡文兵, 杨占威, 陈慧, 等. Plackett-Burman和Box-Behnken试验设计优化超声波-酶法提取青钱柳多糖工艺及结构初探[J]. 天然产物研究与开发,2017,29(4):671−679. [HU W B, YANG Z W, CHEN H, et al. Optimization of ultrasonic and enzyme-assisted extraction of polysaccharides from Cyclocarya paliurus by placket-burman and box-behnken experiment and analysis of its structure[J]. Natural Product Research and Development,2017,29(4):671−679.

    HU W, YANG Z, CHEN H, et al. Optimization of ultrasonic and enzyme-assisted extraction of polysaccharides from Cyclocarya paliurus by placket-burman and box-behnken experiment and analysis of its structure[J]. Natural Product Research and Development, 2017, 29(4): 671-679.
    [34]
    XIE J, ZHANG F, WANG Z, et al. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves[J]. Carbohydrate Polymers,2015,133:596−604. doi: 10.1016/j.carbpol.2015.07.031
    [35]
    谭婉碧, 王琴飞, 余厚美, 等. 植物源功能活性多糖的提取及其研究进展[J]. 热带农业科学,2022,42(7):90−98. [TAN W B, WANG Q F, YU H M, et al. Research progress, extraction and functional activity of plant polysaccharides[J]. Chinese Journal of Tropical Agriculture,2022,42(7):90−98.

    TAN W, WANG Q, YU H, et al. Research progress, extraction and functional activity of plant polysaccharides[J]. Chinese Journal of Tropical Agriculture, 2022, 42(7): 90-98.
    [36]
    赵晨淏, 刘钧发, 冯梦莹, 等. 不同提取方法对龙眼多糖性质的影响[J]. 现代食品科技,2012,28(10):1298−1304,1305. [ZHAO C H, LIU J F, FENG M Y, et al. Effect of different extraction methods on the properties of longan polysaccharides[J]. Modern Food Science and Technology,2012,28(10):1298−1304,1305.

    ZHAO C, LIU J, FENG M, et al. Effect of different extraction methods on the properties of longan polysaccharides[J]. Modern Food Science and Technology, 2012, 28(10): 1298-1304, 1305.
    [37]
    SUN Y, HOU S, SONG S, et al. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides[J]. International Journal of Biological Macromolecules,2018,112:958−995.
    [38]
    TANG Y, ZHU Z, LIU Y, et al. The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from Rose buds[J]. Food & Function,2018,9(4):2300−2312.
    [39]
    杨兵. 拐枣多糖的分离纯化和结构解析及其降血糖活性研究[D]. 重庆: 西南大学, 2020

    YANG B. Isolation, purification, structural identification and hypoglycemic activity of polysaccharides from Hovenia dulcis[D]. Chongqing: Southwest University, 2020.
    [40]
    JI X, ZHANG F, ZHANG R, et al. An acidic polysaccharide from Ziziphus jujuba cv. Muzao: Purification and structural characterization[J]. Food Chemistry,2019,274:494−499. doi: 10.1016/j.foodchem.2018.09.037
    [41]
    李彬, 陈向楠, 张建法, 等. 产胞外多糖菌株的筛选及胞外多糖结构分析[J]. 生物技术通报,2016,32(5):165−171. [LI B, CHEN X N, ZHANG J F, et al. Screening of exopolysaccharide-producing strains and structural analysis of the exopolysaccharides[J]. Biotechnology Bulletin,2016,32(5):165−171.

    LI B, CHEN X, ZHANG J, et al. Screening of exopolysaccharide-producing strains and structural analysis of the exopolysaccharides[J]. Biotechnology Bulletin, 2016, 32(5): 165-171.
    [42]
    赵谋明, 刘敏, 林恋竹, 等. 山苦茶多糖结构表征及抗氧化活性研究[J]. 现代食品科技,2015,31(7):61−66,276. [ZHAO M M, LIU M, LIN L Z, et al. Structural characteristics and antioxidant activity of polysaccharides from Mallotus oblongifolius[J]. Modern Food Science and Technology,2015,31(7):61−66,276.

    ZHAO M, LIU M, LIN L, et al. Structural characteristics and antioxidant activity of polysaccharides from Mallotus oblongifolius[J]. Modern Food Science and Technology, 2015, 31(7): 61-66, 276.
    [43]
    赵志强, 朱叙丞, 冯真颖, 等. 沙棘果多糖的理化特征及其体外抗氧化活性[J]. 食品工业科技,2023,44(13):30−38. [ZHAO Z, ZHU X, FENG Z, et al. Physicochemical characteristic and antioxidant activity in vitro of sea buckthorn fruit polysaccharide[J]. Science and Technology of Food Industry,2023,44(13):30−38.

    ZHAO Z, ZHU X, FENG Z, et al. Physicochemical characteristic and antioxidant activity in vitro of sea buckthorn fruit polysaccharide[J]. Science and Technology of Food Industry, 2023, 44(13): 30-38.
    [44]
    吴金祥, 李荣丽, 吴喆超, 等. 不同分子质量水溶性大豆皮膳食纤维的单糖组成、结构、性质研究[J]. 中国粮油学报,2022,37(7):39−45. [WU J X, LI R L, WU Z C, et al. Monosaccharide composition, structure and properties of soluble dietary fiber with different molecular mass from soybean hulls[J]. Journal of the Chinese Cereals and Oils Association,2022,37(7):39−45.

    WU J, LI R, WU Z, et al. Monosaccharide composition, structure and properties of soluble dietary fiber with different molecular mass from soybean hulls[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(7): 39-45.
    [45]
    张奇, 冯峰, 杨淑玲, 等. 不同产地霸王花粗多糖的单糖组成及体外抗氧化活性[J]. 上海交通大学学报(农业科学版),2019,37(2):83−89. [ZHANG Q, FENG F, YANG S, et al. Studies on monosaccharide composition and antioxidant activity of crude polysaccharide from Hylocereus undatus (Haw.) urilt. et. Rose of different regions[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2019,37(2):83−89. doi: 10.3969/J.ISSN.1671-9964.2019.02.014

    ZHANG Q, FENG F, YANG S, et al. Studies on monosaccharide composition and antioxidant activity of crude polysaccharide from Hylocereus undatus(Haw.) urilt. et. Rose of different regions[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2019, 37(2): 83-89. doi: 10.3969/J.ISSN.1671-9964.2019.02.014
    [46]
    侯令. 硫酸酯化苹果渣水溶性多糖结构表征和生物活性研究[D]. 西安: 陕西科技大学, 2017

    HOU L. Primary structural characterization and biological activity study of sulfated apple pomace polysaccharides[D]. Xi’an: Shaanxi University of Science and Technology, 2017.
  • Cited by

    Periodical cited type(5)

    1. 王月蓉,赵广河,赵丰丽,覃云斌,陈静,张弘. 脐橙皮水溶性膳食纤维提取工艺优化及其体外益生活性评价. 广西师范大学学报(自然科学版). 2025(01): 101-109 .
    2. 沈康,郭瑞成,徐天旭,王伟华. DEAE-52纤维素柱层析纯化处理对西梅可溶性膳食纤维的影响. 食品与发酵工业. 2024(17): 209-217 .
    3. 卢翠文,欧萍,叶有明,何晓燕,杨东美. 微波辅助酶法提取茶酒糟中可溶性膳食纤维及其抗氧化性能研究. 饲料研究. 2024(20): 75-79 .
    4. 池玉闽,董怡,何强,张文学,向燕,何培君,邓莎,何贵萍,贾利蓉. 油橄榄果肉和核壳中膳食纤维的功能特性分析. 现代食品科技. 2023(05): 157-163 .
    5. 王虎玄,赵天添,王聪,张一凡,朱亚南,孙宏民. 陕北狗头红枣可溶性膳食纤维提取工艺优化及其理化特性与抗氧化活性研究. 陕西科技大学学报. 2022(05): 54-62+99 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (217) PDF downloads (17) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return