SHEN Ying, ZHAN Xiuxing, HUANG Chunhong, et al. Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2023, 44(16): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100108.
Citation: SHEN Ying, ZHAN Xiuxing, HUANG Chunhong, et al. Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2023, 44(16): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100108.

Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis

More Information
  • Received Date: October 13, 2022
  • Available Online: June 10, 2023
  • In order to achieve rapid and non-destructive detection of the astaxanthin content in Haematococcus pluvialis, a snapshot multispectral imaging method was proposed in this paper. An imaging system was built by using two snapshot multispectral cameras with visible spectral ranges of 480~635 nm and near-infrared spectral ranges of 665~950 nm, respectively. The spectral data of H. pluvialis samples in different growth periods was collected. To optimize the model prediction, a great variety of methods were compared, including different spectral ranges, three preprocessing methods, two characteristic wavelength selection methods and two modeling methods. The results indicated that the combination of both visible and near-infrared spectroscopy achieved the optimial prediction performance with the pretreatment of first derivation (FD), and the characteristic band selection method of competitive adaptive reweighting sampling (CARS) and modeling method of back propagation (BP) neural network, the prediction set correlation coefficient (Rp) of 0.9622, the root mean square error (RMSEP) of 0.5126 and the residual prediction error (RPD) of 3.6726, which was superior to the visible alone (Rp of 0.9467, RMSEP of 0.6065 and RPD of 3.1042). These indicated that it was feasible to detect the content of astaxanthin in H. pluvialis by the snapshot multispectral imaging technique, and the combination of both visible and near-infrared spectroscopy could be more effective.
  • [1]
    FAKHRI S, ABBASZADEH F, DARGAHI L, et al. Astaxanthin: A mechanistic review on its biological activities and health benefits[J]. Pharmacological Research,2018,136:1−20. doi: 10.1016/j.phrs.2018.08.012
    [2]
    JIANG G, ZHOU L, WANG Y, et al. Astaxanthin from Jerusalem artichoke: Production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics[J]. Process Biochemistry,2017,63:16−25. doi: 10.1016/j.procbio.2017.08.013
    [3]
    KOHANDEL Z, FARKHONDEH T, ASCHNER M, et al. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases[J]. Biomedicine & Pharmacotherapy,2022,145:112179.
    [4]
    MARTÍNEZ-DELGADO A A, KHANDUAL S, VILLANUEVA RODRÍGUEZ S J. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation[J]. Food Chemistry,2017,225:23−30. doi: 10.1016/j.foodchem.2016.11.092
    [5]
    LIM K C, YUSOFF F M, SHARIFF M, et al. Astaxanthin as feed supplement in aquatic animals[J]. Reviews in Aquaculture,2018,10(3):738−773. doi: 10.1111/raq.12200
    [6]
    LI X, WANG X, DUAN C, et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances,2020,43:107602. doi: 10.1016/j.biotechadv.2020.107602
    [7]
    齐安翔. 高产虾青素的雨生红球藻培养基及培养模式的若干研究[D]. 厦门: 厦门大学, 2006

    QI A X. Studies on the medium and culture mode of Haematococcus pluvialis with high astaxanthin production[D]. Xiamen: Xiamen University, 2006.
    [8]
    SU Y, WANG J, SHI M, et al. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions[J]. Bioresource Technology,2014,170:522−529. doi: 10.1016/j.biortech.2014.08.018
    [9]
    王书妍, 孟迎迎, 薛松. 雨生红球藻中虾青素检测方法综述[J]. 内蒙古民族大学学报(自然科学版),2020,35(2):102−107. [WANG S Y, MENG Y Y, XUE S. Review on the determination methods of astaxanthin in Haematococcus pluvialis[J]. Journal of Inner Mongolia University for Nationalities (Natural Science Edition),2020,35(2):102−107.

    WANG S Y, MENG Y Y, XUE S. Review on the determination methods of astaxanthin in Haematococcus pluvialis [J]. Journal of Inner Mongolia University for Nationalities (Natural Science Edition), 2020, 35(02): 102-107.
    [10]
    ZHAO T, YAN X, SUN L, et al. Research progress on extraction, biological activities and delivery systems of natural astaxanthin[J]. Trends in Food Science & Technology,2019,91:354−361.
    [11]
    LI X, CHEN K, HE Y. In situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging technique[J]. Algal Research,2020,45:101680. doi: 10.1016/j.algal.2019.101680
    [12]
    ZHANG J, ZHANG D, CAI Z, et al. Spectral technology and multispectral imaging for estimating the photosynthetic pigments and SPAD of the Chinese cabbage based on machine learning[J]. Computers and Electronics in Agriculture,2022,195:106814. doi: 10.1016/j.compag.2022.106814
    [13]
    KWON Y S, PYO J, KWON Y, et al. Drone-based hyperspectral remote sensing of Cyanobacteria using vertical cumulative pigment concentration in a deep reservoir[J]. Remote Sensing of Environment,2020,236:111517. doi: 10.1016/j.rse.2019.111517
    [14]
    DUPPETI H, CHAKRABORTY S, DAS B S, et al. Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics[J]. Algal Research,2017,27:274−285. doi: 10.1016/j.algal.2017.09.016
    [15]
    蒋林军. 基于光谱技术对雨生红球藻虾青素含量检测及其空间分布的研究[D]. 杭州: 浙江大学, 2017

    JIANG L J. Detection of astaxanthin content in Haematococcus pluvialis and its spatial distribution based on spectral technology[D]. Hangzhou: Zhejiang University, 2017.
    [16]
    高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学精密工程,2020,28(6):1323−1343. [GAO Z D, GAO H X, ZHU Y Y, et al. Overview of snapshot spectral imaging technology[J]. Optical Precision Engineering,2020,28(6):1323−1343. doi: 10.3788/OPE.20202806.1323

    GAO Z D, GAO H X, ZHU Y Y, et al. Overview of snapshot spectral imaging technology [J]. Optical Precision Engineering, 2020, 28(6): 1323-1343. doi: 10.3788/OPE.20202806.1323
    [17]
    YU P, HUANG M, ZHANG M, et al. Rapid detection of moisture content and shrinkage ratio of dried carrot slices by using a multispectral imaging system[J]. Infrared Physics & Technology,2020,108:103361.
    [18]
    魏萱, 蒋璐璐, 赵艳茹, 等. 小球藻生长过程脂肪含量动态变化快速无损检测方法研究[J]. 光谱学与光谱分析,2016,36(5):1352−1357. [WEI X, JIANG L L, ZHAO Y R, et al. Study on fast nondestructive detection method for dynamic change of fat content during Chlorella growth[J]. Spectroscopy and Spectral Analysis,2016,36(5):1352−1357.

    WEI X, JIANG L L, ZHAO Y R, et al. Study on fast nondestructive detection method for dynamic change of fat content during Chlorella growth [J]. Spectroscopy and Spectral Analysis 2016, 36(5): 1352-1357.
    [19]
    马瑞娟. 雨生红球藻和微拟球藻在LED光照和氮源饥饿条件下生长与代谢产物合成特性[D]. 厦门: 厦门大学, 2018

    Ma R J. Growth and metabolite synthesis characteristics of Haematococcus pluvialis and Microchloropsis micrantha under LED light and nitrogen starvation[D]. Xiamen: Xiamen University, 2018.
    [20]
    欧阳琴. 雨生红球藻的培养及其虾青素提取[D]. 福州: 福州大学, 2004

    OUYANG Q. Culture of Haematococcus pluvialis and extraction of astaxanthin[D]. Fuzhou: Fuzhou University, 2004.
    [21]
    CHEN C, JESISCA, HSIEH C, et al. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1[J]. Bioresource Technology,2016,200:500−505. doi: 10.1016/j.biortech.2015.10.071
    [22]
    LUO W, TIAN P, FAN G, et al. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy[J]. Infrared Physics & Technology,2022,123:104037.
    [23]
    褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 北京工业出版社, 2011

    CHU X L. Chemometrics methods and molecular spectral analysis techniques[M]. Beijing: Beijing Industry Press, 2011.
    [24]
    ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in pectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65−73. doi: 10.1016/S0169-7439(01)00119-8
    [25]
    LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta,2009,648(1):77−84. doi: 10.1016/j.aca.2009.06.046
    [26]
    CHENG J, SUN D. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle[J]. Food Engineering Reviews,2017,9(1):36−49. doi: 10.1007/s12393-016-9147-1
    [27]
    SUN X, ZHANG Y, SHI K, et al. Monitoring water quality using proximal remote sensing technology[J]. Science of the Total Environment,2022,803:149805. doi: 10.1016/j.scitotenv.2021.149805
    [28]
    潘健. 基于光谱的微藻藻种鉴别及内部信息(色素、油脂)检测的研究[D]. 杭州: 浙江大学, 2016

    PAN J. Study on spectrum based microalgae species identification and internal information (pigment and oil) detection[D]. Hangzhou: Zhejiang University, 2016.
    [29]
    刘燕德, 肖怀春, 孙旭东, 等. 基于可见与近红外光谱联用的柑桔黄龙病快速无损检测研究[J]. 光谱学与光谱分析,2018,38(2):528−534. [LIU Y D, XIAO H C, SUN X D, et al. Study on rapid nondestructive detection of citrus Huanglong disease based on visible and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(2):528−534.

    LIU Y D, XIAO H C, SUN X D, et al. Study on rapid nondestructive detection of citrus Huanglong disease based on visible and near-infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 528-534.
    [30]
    赵志敏, 洪小芹, 李鹏, 等. 污染水体中蓝藻叶绿素的光谱特征分析[J]. 光谱学与光谱分析,2010,30(6):1596−1599. [ZHAO Z M, HONG X Q, LI P, et al. Spectral characteristics analysis of Cyanobacteria chlorophyll in polluted water[J]. Spectroscopy and Spectral Analysis,2010,30(6):1596−1599. doi: 10.3964/j.issn.1000-0593(2010)06-1596-04

    ZHAO Z M, HONG X Q, LI P, et al. Spectral characteristics analysis of Cyanobacteria chlorophyll in polluted water [J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1596-1599. doi: 10.3964/j.issn.1000-0593(2010)06-1596-04
    [31]
    AN C, YAN X, LU C, et al. Effect of spectral pretreatment on qualitative identification of adulterated bovine colostrum by near-infrared spectroscopy[J]. Infrared Physics & Technology,2021,118:103869.
    [32]
    FAN W, SHAN Y, LI G, et al. Application of competitive adaptive reweighted sampling method to determine effective wavelengths for prediction of total acid of vinegar[J]. Food Analytical Methods,2012,5(3):585−590. doi: 10.1007/s12161-011-9285-2
    [33]
    CHENG J, SUN D, PU H. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle[J]. Food Chemistry,2016,197:855−863. doi: 10.1016/j.foodchem.2015.11.019
  • Cited by

    Periodical cited type(9)

    1. 李萍,武刚,黄会琴,刘文庆,薛虎平,朱廷恒,闫合,俞颖,宋鹏,胡海燕. 产表面活性素芽孢杆菌SFP03的发酵工艺优化. 发酵科技通讯. 2024(02): 67-73 .
    2. 刘军,江宇琪,刘康,代航培,黄翠欣,王风青,李丽,李仲玄,陈鲜鑫,陈玲. 贝莱斯芽孢杆菌产抑菌物质培养基发酵优化. 现代食品科技. 2024(06): 114-123 .
    3. 乔卿梅,程茂高,孙煜鹏,王亚魁,赵元曼. 基于响应面法的九制黄精炮制工艺优化. 河南农业大学学报. 2024(06): 1034-1042 .
    4. 朱佑民. 抗菌脂肽表面活性素在提高断奶仔猪生产性能中的应用. 饲料研究. 2023(01): 152-155 .
    5. 黄万成,郭子鑫,秦浩楠,佟长青,金桥,李伟,曲敏. 海蜇低分子肽制备及体外抗氧化活性. 食品安全质量检测学报. 2023(06): 310-318 .
    6. 唐小华,祁姣姣,朱剑锋,胡文锋. 高产腺嘌呤核苷酸菌株的筛选及发酵工艺优化. 中国酿造. 2023(05): 105-112 .
    7. 李光月,李雪玲,祁姣姣,韩明政,朱剑锋,胡学生,胡文锋. 复合诱变对枯草芽孢杆菌表面活性素抗病毒能力的影响. 黑龙江畜牧兽医. 2023(12): 119-124 .
    8. 陈尚里,于福田,沈圆圆,刘小玲. 高产抗菌脂肽Fengycin芽孢杆菌的诱变育种和发酵条件优化. 食品工业科技. 2023(23): 134-143 . 本站查看
    9. 张钰,马曦,赵金标,鲁琳. 地衣芽孢杆菌发酵条件优化和抑菌活性测定. 中国畜牧兽医. 2022(07): 2812-2819 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (153) PDF downloads (18) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return