Citation: | SHEN Ying, ZHAN Xiuxing, HUANG Chunhong, et al. Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2023, 44(16): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100108. |
[1] |
FAKHRI S, ABBASZADEH F, DARGAHI L, et al. Astaxanthin: A mechanistic review on its biological activities and health benefits[J]. Pharmacological Research,2018,136:1−20. doi: 10.1016/j.phrs.2018.08.012
|
[2] |
JIANG G, ZHOU L, WANG Y, et al. Astaxanthin from Jerusalem artichoke: Production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics[J]. Process Biochemistry,2017,63:16−25. doi: 10.1016/j.procbio.2017.08.013
|
[3] |
KOHANDEL Z, FARKHONDEH T, ASCHNER M, et al. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases[J]. Biomedicine & Pharmacotherapy,2022,145:112179.
|
[4] |
MARTÍNEZ-DELGADO A A, KHANDUAL S, VILLANUEVA RODRÍGUEZ S J. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation[J]. Food Chemistry,2017,225:23−30. doi: 10.1016/j.foodchem.2016.11.092
|
[5] |
LIM K C, YUSOFF F M, SHARIFF M, et al. Astaxanthin as feed supplement in aquatic animals[J]. Reviews in Aquaculture,2018,10(3):738−773. doi: 10.1111/raq.12200
|
[6] |
LI X, WANG X, DUAN C, et al. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances,2020,43:107602. doi: 10.1016/j.biotechadv.2020.107602
|
[7] |
齐安翔. 高产虾青素的雨生红球藻培养基及培养模式的若干研究[D]. 厦门: 厦门大学, 2006
QI A X. Studies on the medium and culture mode of Haematococcus pluvialis with high astaxanthin production[D]. Xiamen: Xiamen University, 2006.
|
[8] |
SU Y, WANG J, SHI M, et al. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions[J]. Bioresource Technology,2014,170:522−529. doi: 10.1016/j.biortech.2014.08.018
|
[9] |
王书妍, 孟迎迎, 薛松. 雨生红球藻中虾青素检测方法综述[J]. 内蒙古民族大学学报(自然科学版),2020,35(2):102−107. [WANG S Y, MENG Y Y, XUE S. Review on the determination methods of astaxanthin in Haematococcus pluvialis[J]. Journal of Inner Mongolia University for Nationalities (Natural Science Edition),2020,35(2):102−107.
WANG S Y, MENG Y Y, XUE S. Review on the determination methods of astaxanthin in Haematococcus pluvialis [J]. Journal of Inner Mongolia University for Nationalities (Natural Science Edition), 2020, 35(02): 102-107.
|
[10] |
ZHAO T, YAN X, SUN L, et al. Research progress on extraction, biological activities and delivery systems of natural astaxanthin[J]. Trends in Food Science & Technology,2019,91:354−361.
|
[11] |
LI X, CHEN K, HE Y. In situ and non-destructive detection of the lipid concentration of Scenedesmus obliquus using hyperspectral imaging technique[J]. Algal Research,2020,45:101680. doi: 10.1016/j.algal.2019.101680
|
[12] |
ZHANG J, ZHANG D, CAI Z, et al. Spectral technology and multispectral imaging for estimating the photosynthetic pigments and SPAD of the Chinese cabbage based on machine learning[J]. Computers and Electronics in Agriculture,2022,195:106814. doi: 10.1016/j.compag.2022.106814
|
[13] |
KWON Y S, PYO J, KWON Y, et al. Drone-based hyperspectral remote sensing of Cyanobacteria using vertical cumulative pigment concentration in a deep reservoir[J]. Remote Sensing of Environment,2020,236:111517. doi: 10.1016/j.rse.2019.111517
|
[14] |
DUPPETI H, CHAKRABORTY S, DAS B S, et al. Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics[J]. Algal Research,2017,27:274−285. doi: 10.1016/j.algal.2017.09.016
|
[15] |
蒋林军. 基于光谱技术对雨生红球藻虾青素含量检测及其空间分布的研究[D]. 杭州: 浙江大学, 2017
JIANG L J. Detection of astaxanthin content in Haematococcus pluvialis and its spatial distribution based on spectral technology[D]. Hangzhou: Zhejiang University, 2017.
|
[16] |
高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学精密工程,2020,28(6):1323−1343. [GAO Z D, GAO H X, ZHU Y Y, et al. Overview of snapshot spectral imaging technology[J]. Optical Precision Engineering,2020,28(6):1323−1343. doi: 10.3788/OPE.20202806.1323
GAO Z D, GAO H X, ZHU Y Y, et al. Overview of snapshot spectral imaging technology [J]. Optical Precision Engineering, 2020, 28(6): 1323-1343. doi: 10.3788/OPE.20202806.1323
|
[17] |
YU P, HUANG M, ZHANG M, et al. Rapid detection of moisture content and shrinkage ratio of dried carrot slices by using a multispectral imaging system[J]. Infrared Physics & Technology,2020,108:103361.
|
[18] |
魏萱, 蒋璐璐, 赵艳茹, 等. 小球藻生长过程脂肪含量动态变化快速无损检测方法研究[J]. 光谱学与光谱分析,2016,36(5):1352−1357. [WEI X, JIANG L L, ZHAO Y R, et al. Study on fast nondestructive detection method for dynamic change of fat content during Chlorella growth[J]. Spectroscopy and Spectral Analysis,2016,36(5):1352−1357.
WEI X, JIANG L L, ZHAO Y R, et al. Study on fast nondestructive detection method for dynamic change of fat content during Chlorella growth [J]. Spectroscopy and Spectral Analysis 2016, 36(5): 1352-1357.
|
[19] |
马瑞娟. 雨生红球藻和微拟球藻在LED光照和氮源饥饿条件下生长与代谢产物合成特性[D]. 厦门: 厦门大学, 2018
Ma R J. Growth and metabolite synthesis characteristics of Haematococcus pluvialis and Microchloropsis micrantha under LED light and nitrogen starvation[D]. Xiamen: Xiamen University, 2018.
|
[20] |
欧阳琴. 雨生红球藻的培养及其虾青素提取[D]. 福州: 福州大学, 2004
OUYANG Q. Culture of Haematococcus pluvialis and extraction of astaxanthin[D]. Fuzhou: Fuzhou University, 2004.
|
[21] |
CHEN C, JESISCA, HSIEH C, et al. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1[J]. Bioresource Technology,2016,200:500−505. doi: 10.1016/j.biortech.2015.10.071
|
[22] |
LUO W, TIAN P, FAN G, et al. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy[J]. Infrared Physics & Technology,2022,123:104037.
|
[23] |
褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 北京工业出版社, 2011
CHU X L. Chemometrics methods and molecular spectral analysis techniques[M]. Beijing: Beijing Industry Press, 2011.
|
[24] |
ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in pectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65−73. doi: 10.1016/S0169-7439(01)00119-8
|
[25] |
LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta,2009,648(1):77−84. doi: 10.1016/j.aca.2009.06.046
|
[26] |
CHENG J, SUN D. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle[J]. Food Engineering Reviews,2017,9(1):36−49. doi: 10.1007/s12393-016-9147-1
|
[27] |
SUN X, ZHANG Y, SHI K, et al. Monitoring water quality using proximal remote sensing technology[J]. Science of the Total Environment,2022,803:149805. doi: 10.1016/j.scitotenv.2021.149805
|
[28] |
潘健. 基于光谱的微藻藻种鉴别及内部信息(色素、油脂)检测的研究[D]. 杭州: 浙江大学, 2016
PAN J. Study on spectrum based microalgae species identification and internal information (pigment and oil) detection[D]. Hangzhou: Zhejiang University, 2016.
|
[29] |
刘燕德, 肖怀春, 孙旭东, 等. 基于可见与近红外光谱联用的柑桔黄龙病快速无损检测研究[J]. 光谱学与光谱分析,2018,38(2):528−534. [LIU Y D, XIAO H C, SUN X D, et al. Study on rapid nondestructive detection of citrus Huanglong disease based on visible and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(2):528−534.
LIU Y D, XIAO H C, SUN X D, et al. Study on rapid nondestructive detection of citrus Huanglong disease based on visible and near-infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 528-534.
|
[30] |
赵志敏, 洪小芹, 李鹏, 等. 污染水体中蓝藻叶绿素的光谱特征分析[J]. 光谱学与光谱分析,2010,30(6):1596−1599. [ZHAO Z M, HONG X Q, LI P, et al. Spectral characteristics analysis of Cyanobacteria chlorophyll in polluted water[J]. Spectroscopy and Spectral Analysis,2010,30(6):1596−1599. doi: 10.3964/j.issn.1000-0593(2010)06-1596-04
ZHAO Z M, HONG X Q, LI P, et al. Spectral characteristics analysis of Cyanobacteria chlorophyll in polluted water [J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1596-1599. doi: 10.3964/j.issn.1000-0593(2010)06-1596-04
|
[31] |
AN C, YAN X, LU C, et al. Effect of spectral pretreatment on qualitative identification of adulterated bovine colostrum by near-infrared spectroscopy[J]. Infrared Physics & Technology,2021,118:103869.
|
[32] |
FAN W, SHAN Y, LI G, et al. Application of competitive adaptive reweighted sampling method to determine effective wavelengths for prediction of total acid of vinegar[J]. Food Analytical Methods,2012,5(3):585−590. doi: 10.1007/s12161-011-9285-2
|
[33] |
CHENG J, SUN D, PU H. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle[J]. Food Chemistry,2016,197:855−863. doi: 10.1016/j.foodchem.2015.11.019
|
1. |
李萍,武刚,黄会琴,刘文庆,薛虎平,朱廷恒,闫合,俞颖,宋鹏,胡海燕. 产表面活性素芽孢杆菌SFP03的发酵工艺优化. 发酵科技通讯. 2024(02): 67-73 .
![]() | |
2. |
刘军,江宇琪,刘康,代航培,黄翠欣,王风青,李丽,李仲玄,陈鲜鑫,陈玲. 贝莱斯芽孢杆菌产抑菌物质培养基发酵优化. 现代食品科技. 2024(06): 114-123 .
![]() | |
3. |
乔卿梅,程茂高,孙煜鹏,王亚魁,赵元曼. 基于响应面法的九制黄精炮制工艺优化. 河南农业大学学报. 2024(06): 1034-1042 .
![]() | |
4. |
朱佑民. 抗菌脂肽表面活性素在提高断奶仔猪生产性能中的应用. 饲料研究. 2023(01): 152-155 .
![]() | |
5. |
黄万成,郭子鑫,秦浩楠,佟长青,金桥,李伟,曲敏. 海蜇低分子肽制备及体外抗氧化活性. 食品安全质量检测学报. 2023(06): 310-318 .
![]() | |
6. |
唐小华,祁姣姣,朱剑锋,胡文锋. 高产腺嘌呤核苷酸菌株的筛选及发酵工艺优化. 中国酿造. 2023(05): 105-112 .
![]() | |
7. |
李光月,李雪玲,祁姣姣,韩明政,朱剑锋,胡学生,胡文锋. 复合诱变对枯草芽孢杆菌表面活性素抗病毒能力的影响. 黑龙江畜牧兽医. 2023(12): 119-124 .
![]() | |
8. |
陈尚里,于福田,沈圆圆,刘小玲. 高产抗菌脂肽Fengycin芽孢杆菌的诱变育种和发酵条件优化. 食品工业科技. 2023(23): 134-143 .
![]() | |
9. |
张钰,马曦,赵金标,鲁琳. 地衣芽孢杆菌发酵条件优化和抑菌活性测定. 中国畜牧兽医. 2022(07): 2812-2819 .
![]() |