Citation: | JIAO Siyu, XU Dingyu, YAO Xianchao, et al. Study on the Mechanism of Procyanidins Adsorption onto Chitosan Microflower[J]. Science and Technology of Food Industry, 2023, 44(18): 43−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100097. |
[1] |
ENOMOTO T, NAGASAKO-AKAZOME Y, KANDA T, et al. Clinical effects of apple polyphenols on persistent allergic rhinitis: A randomized double-blind placebo-controlled parallel arm study[J]. Journal of Investigational Allergology and Clinical Immunology,2006,16(5):283−289.
|
[2] |
GONZALEZ-BARRIO R, NUNEZ-GOMEZ V, CIENFUEGOS-JOVELLANOS E, et al. Improvement of the flavanol profile and the antioxidant capacity of chocolate using a phenolic rich cocoa powder[J]. Foods,2020,9(2):12.
|
[3] |
MAO J T, XUE B Y, SMOAKE J, et al. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer[J]. Journal of Nutritional Biochemistry,2016,34:118−125. doi: 10.1016/j.jnutbio.2016.05.003
|
[4] |
SHARMA S D, MEERAN S M, KATIYAR S K. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E-2 and prostaglandin E-2 receptors[J]. Molecular Cancer Therapeutics,2010,9(3):569−580. doi: 10.1158/1535-7163.MCT-09-0638
|
[5] |
ZHU F. Proanthocyanidins in cereals and pseudocereals[J]. Critical Reviews in Food Science and Nutrition,2019,59(10):1521−1533. doi: 10.1080/10408398.2017.1418284
|
[6] |
LU W C, HUANG W T, KUMARAN A, et al. Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium[J]. Journal of Agricultural and Food Chemistry,2011,59(11):6214−6220. doi: 10.1021/jf104973h
|
[7] |
XU Z, WEI L H, GE Z Z, et al. Comparison of the degradation kinetics of A-type and B-type proanthocyanidins dimers as a function of pH and temperature[J]. European Food Research and Technology,2015,240(4):707−717. doi: 10.1007/s00217-014-2375-9
|
[8] |
KHAN M K, AHMAD K, HASSAN S, et al. Effect of novel technologies on polyphenols during food processing[J]. Innovative Food Science & Emerging Technologies,2018,45:361−381.
|
[9] |
LUKIC K, VUKUSIC T, TOMASEVIC M, et al. The impact of high voltage electrical discharge plasma on the chromatic characteristics and phenolic composition of red and white wines[J]. Innovative Food Science & Emerging Technologies,2019,53:70−77.
|
[10] |
TIE S S, ZHANG X D, WANG H T, et al. Procyanidins-loaded complex coacervates for improved stability by self-crosslinking and calcium ions chelation[J]. Journal of Agricultural and Food Chemistry,2020,68(10):3163−3170. doi: 10.1021/acs.jafc.0c00242
|
[11] |
LIU C Z, GE S J, YANG J, et al. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions[J]. Journal of Functional Foods,2016,26:632−644. doi: 10.1016/j.jff.2016.08.036
|
[12] |
LIU K, FENG Z Q, SHAN L, et al. Preparation, characterization, and antioxidative activity of Bletilla striata polysaccharide/chitosan microspheres for oligomeric proanthocyanidins[J]. Drying Technology,2017,35(13):1629−1643. doi: 10.1080/07373937.2016.1269123
|
[13] |
RAMPINO A, BORGOGNA M, BLASI P, et al. Chitosan nanoparticles: Preparation, size evolution and stability[J]. International Journal of Pharmaceutics,2013,455(1-2):219−228. doi: 10.1016/j.ijpharm.2013.07.034
|
[14] |
LUO C, WU S Z, LI J, et al. Chitosan/calcium phosphate flower-like microparticles as carriers for drug delivery platform[J]. International Journal of Biological Macromolecules,2020,155:174−183. doi: 10.1016/j.ijbiomac.2020.03.172
|
[15] |
DHAVALE R P, DHAVALE R P, SAHOO S C, et al. Chitosan coated magnetic nanoparticles as carriers of anticancer drug telmisartan: pH-responsive controlled drug release and cytotoxicity studies[J]. Journal of Physics and Chemistry of Solids,2021,148:8.
|
[16] |
SOHAIL R, ABBAS S R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy[J]. International Journal of Biological Macromolecules,2020,153:36−45. doi: 10.1016/j.ijbiomac.2020.02.191
|
[17] |
LIANG J, LI F, FANG Y, et al. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells[J]. Materials Science & Engineering C-Materials for Biological Applications,2014,36:7−13.
|
[18] |
JIANG S W, YU Z Y, HU H L, et al. Adsorption of procyanidins onto chitosan-modified porous rice starch[J]. LWT-Food Science and Technology,2017,84:10−17. doi: 10.1016/j.lwt.2017.05.047
|
[19] |
JI Y, LIN X, YU J C. Preparation and characterization of oxidized starch-chitosan complexes for adsorption of procyanidins[J]. LWT-Food Science and Technology,2020,117:6.
|
[20] |
焦思宇, 姚先超, 史永桂, 等. 壳聚糖微花对原花青素的负载表征及缓释性能[J]. 食品科学,2022,43(14):28−34. [JIAO S Y, YAO X C, SHI Y G, et al. Characterization and sustained release properties of chitosan microflowers loaded with procyanidins[J]. Food Science,2022,43(14):28−34.
JIAO S Y, YAO X C, SHI Y G, et al. Characterization and sustained release properties of chitosan microflowers loaded with procyanidins[J]. Food Science, 2022, 43(14): 28-34.
|
[21] |
王天佑, 毛星星, 张义云, 等. UIO-66-NH2金属-有机骨架材料吸附分离四甲苯异构体[J]. 高校化学工程学报,2022,36(4):488−497. [WANG T Y, MAO X X, ZHANG Y Y, et al. Adsorption and separation of tetramethylbenze isomers by metal-organic frameworks UIO-66-NH2[J]. Journal of Chemical Engineering of Chinese Universities,2022,36(4):488−497.
WANG T Y, MAO X X, ZHANG Y Y, et al. Adsorption and separation of tetramethylbenze isomers by metal-organic frameworks UIO-66-NH2[J]. Journal of Chemical Engineering of Chinese Universities 2022, 36(4): 488-497.
|
[22] |
SINGH S, KUMAR A, GUPTA H. Activated banana peel carbon: a potential adsorbent for rhodamine B decontamination from aqueous system[J]. Applied Water Science,2020,10(8):8.
|
[23] |
陈煜南, 付赵跃, 何欢乐. 改性壳聚糖水凝胶对废水中Cu2+、Cd2+和Pb2+的吸附[J]. 皮革与化工,2022,39(1):24−28. [CHEN Y N, FU Z Y, HE H L. Adsorption of Cu2+, Cd2+ and Pb2+ in wastewater by modified chitosan hydrogel[J]. Leather and Chemicals,2022,39(1):24−28.
CHEN Y N, FU Z Y, HE H L. Adsorption of Cu2+, Cd2+ and Pb2+ in wastewater by modified chitosan hydrogel[J]. Leather and Chemicals, 2022, 39(1): 24-28.
|
[24] |
MUNOZ-LABRADOR A, PRODANOV M, VILLAMIEL M. Effects of high intensity ultrasound on disaggregation of a macromolecular procyanidin-rich fraction from Vitis vinifera L. seed extract and evaluation of its antioxidant activity[J]. Ultrasonics Sonochemistry,2019,50:74−81. doi: 10.1016/j.ultsonch.2018.08.030
|
[25] |
国田, 张娜, 符群, 等. 几种辅助提取方式对蓝莓原花青素浸提效果及抗氧化活性的影响[J]. 北京林业大学学报,2020,42(9):139−148. [GUO T, ZHANG N, FU Q, et al. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University,2020,42(9):139−148.
GUO T, ZHANG N, FU Q, et al. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148.
|
[26] |
KHOERUNNISA F, NURHAYATI M, DARA F, et al. Physicochemical properties of TPP-crosslinked chitosan nanoparticles as potential antibacterial agents[J]. Fibers and Polymers,2021,22(11):2954−2964. doi: 10.1007/s12221-021-0397-z
|
[27] |
YAZDI F, ANBIA M, SALEHI S. Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media[J]. International Journal of Biological Macromolecules,2019,130:545−555. doi: 10.1016/j.ijbiomac.2019.02.127
|
[28] |
阮湘梅, 杨子明, 李普旺, 等. 水杨酸/季鏻盐双改性壳聚糖抗菌保鲜剂的制备及表征[J]. 现代食品科技,2022,38(6):145−151,115. [RUAN X M, YANG Z M, LI P W, et al. Preparation and characterization of salicylic acid/quaternary phosphonium salt-modified chitosan as an antibacterial preservative[J]. Modern Food Science and Technology,2022,38(6):145−151,115. doi: 10.13982/j.mfst.1673-9078.2022.6.1299
RUAN X M, YANG Z M, LI P W, et al. Preparation and characterization of salicylic acid/quaternary phosphonium salt-modified chitosan as an antibacterial preservative[J]. Modern Food Science and Technology, 2022, 38(6): 145-151, 115. doi: 10.13982/j.mfst.1673-9078.2022.6.1299
|
[29] |
VASILIU S, BUNIA I, RACOVITA S, et al. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equilibrium and thermodynamic studies[J]. Carbohydrate Polymers,2011,85(2):376−387. doi: 10.1016/j.carbpol.2011.02.039
|
[30] |
LORENC-GRABOWSKA E, GRYGLEWICZ G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons[J]. Journal of Colloid and Interface Science,2005,284(2):416−423. doi: 10.1016/j.jcis.2004.10.031
|
[31] |
王伟涛, 陈香李, 杨百勤. 固体在液相中吸附热力学参数计算介绍[J]. 大学化学,2021,36(2):233−240. [WANG W T, CHEN X L, YANG B Q. Calculation of adsorption thermodynamics parameters for adsorption on the solid-liquid interface[J]. Univ Chem,2021,36(2):233−240.
WANG W T, CHEN X L, YANG B Q. Calculation of adsorption thermodynamics parameters for adsorption on the solid-liquid interface[J]. Univ Chem, 2021, 36(2): 233-240.
|
[32] |
FENG-MIN S, HONG-GUANG G, SHI J, et al. Adsorption kinetics and thermodynamics of Ni (II) by Pisha sandstone[J]. Journal of Nanoparticle Research,2020,22(7):179. doi: 10.1007/s11051-020-04894-8
|
[33] |
AHMAD M A, ALROZI R. Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal,2011,171(2):510−516. doi: 10.1016/j.cej.2011.04.018
|
[34] |
WU J G, XIA A Q, CHEN C Y, et al. Adsorption thermodynamics and dynamics of three typical dyes onto bio-adsorbent spent substrate of Pleurotus eryngii[J]. International Journal of Environmental Research and Public Health,2019,16(5):11.
|
[35] |
WU Y H, SU M H, CHEN J W, et al. Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies[J]. Dyes and Pigments,2019,170:8.
|