Citation: | SUN Xinyi, SUN Qingrui, LI Xiubo, et al. Research Progress of Carotenoid Isomerization and Its Effects on Biological Activity and Bioavailability[J]. Science and Technology of Food Industry, 2023, 44(21): 412−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100031. |
[1] |
MAOKA T. Carotenoids as natural functional pigments[J]. Journal of Natural Medicines,2020,74(1):1−16. doi: 10.1007/s11418-019-01364-x
|
[2] |
EGGERSDORFER M, WYSS A. Carotenoids in human nutrition and health[J]. Archives of Biochemistry and Biophysics,2018,652:18−26. doi: 10.1016/j.abb.2018.06.001
|
[3] |
ELVIRA-TORALES L I, GARCíA-ALONSO J, PERIAGO-CASTóN M J. Nutritional importance of carotenoids and their effect on liver health:A review[J]. Antioxidants,2019,8(7):229. doi: 10.3390/antiox8070229
|
[4] |
孙清瑞. 碘纳米粒催化番茄红素反—顺构型转化及纳米结构脂质载体[D]. 无锡:江南大学, 2016
SUN Q R. E/Z isomerization of lycopene catalyzed by lodine-nanoparticlies and lycopene-loaded nanostructured lipid carriers[D]. Wuxi:Jiangnan University, 2016.
|
[5] |
MÜLLER L, GOUPY P, FRÖHLICH K, et al. Comparative study on antioxidant activity of lycopene (Z)-isomers in different assays[J]. Journal of Agricultural and Food Chemistry,2011,59(9):4504−4511. doi: 10.1021/jf1045969
|
[6] |
ZECHMEISTER L, TUZSON P. Spontaneous isomerization of lycopene[J]. Nature,1938,141(3562):249−250. doi: 10.1038/141249a0
|
[7] |
HONDA M, MAEDA H, FUKAYA T, et al. Effects of Z-isomerization on the bioavailability and functionality of carotenoids:A review[J]. Progress in Carotenoid Research,2018:139−159.
|
[8] |
徐媛. 红葡萄柚番茄红素加工降解机制及其定量构效关系研究[D]. 武汉:华中农业大学, 2013
XU Y. Studies on degeradation mechanism of lycopene from red grapefruit during processing and quantitative structure-activity relationship[D]. Wuhan:Huazhong Agricultural University, 2013.
|
[9] |
ZECHMEISTER L E R B. A stereochemical study of methylbixin[J]. Journal of the American Chemical Society,1944,66(3):322−330. doi: 10.1021/ja01231a002
|
[10] |
LIANG X, MA C, YAN X, et al. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene[J]. Trends in Food Science & Technology,2019,93:185−196.
|
[11] |
朱倩, 高瑞萍, 雷琳, 等. 番茄红素热异构化机制及其影响因素研究进展[J]. 食品科学,2018,39(15):310−315
ZHU Q, GAO R P, LEI L. Mechanism and factors influencing thermal isomerization of lycopene:A review[J]. Food Science,2018,39(15):310−315.
|
[12] |
HONDA M, TAKAHASHI N, KUWA T, et al. Spectral characterisation of Z-isomers of lycopene formed during heat treatment and solvent effects on the E/Z isomerisation process[J]. Food Chemistry,2015,171:323−329. doi: 10.1016/j.foodchem.2014.09.004
|
[13] |
MURAKAMI K, HONDA M, WAHYUDIONO, et al. Thermal isomerization of (all-E)-lycopene and separation of the Z-isomers by using a low boiling solvent:Dimethyl ether[J]. Separation Science and Technology,2017,52(16):2573−2582. doi: 10.1080/01496395.2017.1374412
|
[14] |
DINA B, GUANG-YING S, XUE-LING H, et al. Study on low-temperature preparation of high-purity lycopene isomers and their isomerization and degradation in edible oils[J]. Journal of Instrumental Analysis,2021,40(1):27−35.
|
[15] |
ONO M, HONDA M, YASUDA K, et al. Production of β-carotene nanosuspensions using supercritical CO2 and improvement of its efficiency by Z-isomerization pre-treatment[J]. The Journal of Supercritical Fluids,2018,138:124−131. doi: 10.1016/j.supflu.2018.04.006
|
[16] |
HONDA M, KAGEYAMA H, HIBINO T, et al. Synergistic effects of food ingredients and vegetable oils on thermal isomerization of lycopene[J]. Journal of Oleo Science,2020,69(12):1529−1540. doi: 10.5650/jos.ess20174
|
[17] |
MILANOWSKA J, GRUSZECKI W I. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin[J]. Journal of Photochemistry and Photobiology B:Biology,2005,80(3):178−186. doi: 10.1016/j.jphotobiol.2005.05.004
|
[18] |
HONDA M, MURAKAMI K, ZHANG Y, et al. Rapid and continuous astaxanthin isomerization in subcritical ethanol[J]. Industrial & Engineering Chemistry Research,2021,60(39):14060−14068.
|
[19] |
HONDA M. Application of E/Z-isomerization technology for enhancing processing efficiency, health-promoting effects, and usability of carotenoids:A review and future perspectives[J]. Journal of Oleo Science,2022,71(2):151−165. doi: 10.5650/jos.ess21338
|
[20] |
HONDA M, MURAKAMI K, WATANABE Y, et al. The E/Z isomer ratio of lycopene in foods and effect of heating with edible oils and fats on isomerization of (all-E)-lycopene[J]. European Journal of Lipid Science and Technology,2017,119(8):1600389. doi: 10.1002/ejlt.201600389
|
[21] |
HONDA M, KAGEYAMA H, HIBINO T, et al. Impact of global traditional seasonings on thermal Z-isomerization of (all-E)-lycopene in tomato puree[J]. LWT- Food Science and Technology,2019,116:108565. doi: 10.1016/j.lwt.2019.108565
|
[22] |
HONDA M, MURAKAMI K, ZHANG Y, et al. High-efficiency lycopene isomerization with subcritical ethyl acetate in a continuous-flow reactor[J]. The Journal of Supercritical Fluids,2021,178:105383. doi: 10.1016/j.supflu.2021.105383
|
[23] |
HONDA M, KAGEYAMA H, HIBINO T, et al. Chemical‐free approach for Z‐isomerization of lycopene in tomato powder:hot air and superheated steam heating above the melting point of lycopene[J]. European Journal of Lipid Science and Technology,2019,122(3):1900327.
|
[24] |
HONDA M. Carotenoid isomers:A systematic review of the analysis, biological activity, physicochemical property, and methods for isomerization[J]. Studies in Natural Products Chemistry,2021,68:173−220.
|
[25] |
WANG Q, YANG C, LIU Y, et al. Efficient E/ Z conversion of (all-E)-lycopene to Z-isomers with a high proportion of (5Z)-lycopene by metal salts[J]. LWT-Food Science and Technology,2022,160:113268. doi: 10.1016/j.lwt.2022.113268
|
[26] |
ZHANG Y, HONDA M, KANDA H, et al. Enhanced production of β-carotene suspensions using supercritical CO2 via naturally occurring Z-isomerization-accelerating catalyst[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2020:012008.
|
[27] |
GAO Y, KISPERT L D, KONOVALOVA T A, et al. Isomerization of carotenoids in the presence of MCM-41 molecular sieves:EPR and HPLC studies[J]. The Journal of Physical Chemistry B,2004,108(27):9456−9462. doi: 10.1021/jp036091e
|
[28] |
HONDA M, KAGEYAMA H, HIBINO T, et al. Isomerization of commercially important carotenoids (lycopene, β-carotene, and astaxanthin) by natural catalysts:Isothiocyanates and polysulfides[J]. Journal of Agricultural and Food Chemistry,2020,68(10):3228−3237. doi: 10.1021/acs.jafc.0c00316
|
[29] |
杨成. 含氧类胡萝卜素异构体的制备纯化, 吸收代谢及对肠道功能的影响[D]. 无锡:江南大学, 2018
YANG C. Xanthophyll isomers:Rapid preparation, purification, metabolic fate and their effects on the intestinal function[D]. Wuxi:Jiangnan University, 2018.
|
[30] |
LI D, XIAO Y, ZHANG Z, et al. Light-induced oxidation and isomerization of all-trans- β-cryptoxanthin in a model system[J]. Journal of Photochemistry and Photobiology B:Biology,2015,142:51−58. doi: 10.1016/j.jphotobiol.2014.11.003
|
[31] |
MURAKAMI K, HONDA M, TAKEMURA R, et al. Effect of thermal treatment and light irradiation on the stability of lycopene with high Z-isomers content[J]. Food Chemistry,2018,250:253−258. doi: 10.1016/j.foodchem.2018.01.062
|
[32] |
HONDA M, IGAMI H, KAWANA T, et al. Photosensitized E/Z isomerization of (all-E)-lycopene aiming at practical applications[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11353−11356. doi: 10.1021/jf504502t
|
[33] |
HONDA M, KAGEYAMA H, HIBINO T, et al. Efficient and environmentally friendly method for carotenoid extraction from paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts[J]. Process Biochemistry,2020,89:146−154. doi: 10.1016/j.procbio.2019.10.005
|
[34] |
O'NEIL C A, SCHWARTZ S J. Photoisomerization of β-carotene by photosensitization with chlorophyll derivatives as sensitizers[J]. Journal of Agricultural and Food Chemistry,1995,43(3):631−635. doi: 10.1021/jf00051a014
|
[35] |
HONDA M, WATANABE Y, MURAKAMI K, et al. Enhanced lycopene extraction from gac ( momordica cochinchinensis spreng.) by the Z‐isomerization induced with microwave irradiation pre‐treatment[J]. European Journal of Lipid Science and Technology,2018,120(2):1700293. doi: 10.1002/ejlt.201700293
|
[36] |
HONDA M, SATO H, TAKEHARA M, et al. Microwave‐accelerated Z‐isomerization of (all‐E)‐lycopene in tomato oleoresin and enhancement of the conversion by vegetable oils containing disulfide compounds[J]. European Journal of Lipid Science and Technology,2018,120(7):1800060. doi: 10.1002/ejlt.201800060
|
[37] |
CHIH-CHANG WEI, GAO G, KISPERT L D. Selected cis/trans isomers of carotenoids formed by bulk electrolysis and iron(III) chloride oxidation[J]. Journal of the Chemical Society, Perkin Transactions 2,1997,4:783−786.
|
[38] |
G G, C W C, A J S, et al. Geometrical isomerization of carotenoids mediated by cation radical/dication formation[J]. The Journal of Physcial Chemisty,1996,100(13):5362−5366.
|
[39] |
CHENG H M, KOUTSIDIS G, LODGE J K, et al. Lycopene and tomato and risk of cardiovascular diseases:A systematic review and meta-analysis of epidemiological evidence[J]. Critical Reviews in Food Science and Nutrition,2019,59(1):141−158. doi: 10.1080/10408398.2017.1362630
|
[40] |
于颖, 张维, 谢凡, 等. 改善番茄红素生物利用度的研究进展[J]. 食品科学,2019,40(19):346−352 doi: 10.7506/spkx1002-6630-20181011-094
ZHANG Y, ZHANG W, XIE F, et al. Progress in the improvement of lycopene bioavailability[J]. Food Science,2019,40(19):346−352. doi: 10.7506/spkx1002-6630-20181011-094
|
[41] |
BöHM V, PUSPITASARI-NIENABER N L, FERRUZZI M G, et al. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin[J]. Journal of Agricultural and Food Chemistry,2002,50(1):221−226. doi: 10.1021/jf010888q
|
[42] |
CAMPOS-LOZADA G, PéREZ-MARROQUíN X A, CALLEJAS-QUIJADA G, et al. The effect of high-intensity ultrasound and natural oils on the extraction and antioxidant activity of lycopene from tomato ( solanum lycopersicum) waste[J]. Antioxidants,2022,11(7):1404. doi: 10.3390/antiox11071404
|
[43] |
LEVIN G, YESHURUN M, MOKADY S. In vivo antiperoxidative effect of 9‐cis β‐carotene compared with that of the all‐trans isomer[J]. Nutrition and Cancer,1997:293−297.
|
[44] |
RODRIGUES E, MARIUTTI L R, CHISTé R C, et al. Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity:Application to carotenoids and structure-activity relationship[J]. Food Chemistry,2012,135(3):2103−2111. doi: 10.1016/j.foodchem.2012.06.074
|
[45] |
HARARI A, HARATS D, MARKO D, et al. Supplementation with 9-cis β-carotene-rich alga dunaliella improves hyperglycemia and adipose tissue inflammation in diabetic mice[J]. Journal of Applied Phycology,2013,25(2):687−693. doi: 10.1007/s10811-012-9903-4
|
[46] |
YANG C, FISCHER M, KIRBY C, et al. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities[J]. Food Chemistry,2018,249:66−76. doi: 10.1016/j.foodchem.2017.12.055
|
[47] |
LIU X, CHEN X, LIU H, et al. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in caenorhabditis elegans[J]. Journal of Functional Foods,2018,44:127−136. doi: 10.1016/j.jff.2018.03.004
|
[48] |
GENG T, BAO S, SUN X, et al. A clarification of concepts related to the digestion and absorption of carotenoids and a new standardized carotenoids bioavailability evaluation system[J]. Food Chemistry,2023,400:134060.
|
[49] |
HONDA M, NAKAYAMA Y, NISHIKAWA S, et al. Z-isomers of lycopene exhibit greater liver accumulation than the all-E-isomer in mice[J]. Bioscience, Biotechnology, and Biochemistry,2020,84(2):428−431. doi: 10.1080/09168451.2019.1677144
|
[50] |
COOPERSTONE J L, RALSTON R A, RIEDL K M, et al. Enhanced bioavailability of lycopene when consumed as cis‐isomers from tangerine compared to red tomato juice, a randomized, cross‐over clinical trial[J]. Molecular Nutrition & Food Research,2015,59(4):658−669.
|
[51] |
FAILLA M L, CHITCHUMROONCHOKCHAI C, ISHIDA B K. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene[J]. The Journal of Nutrition,2008,138(3):482−486. doi: 10.1093/jn/138.3.482
|
[52] |
SUN Q, YANG C, LI J, et al. Lycopene:Heterogeneous catalytic E/Z isomerization and in vitro bioaccessibility assessment using a diffusion model[J]. Journal of Food Science,2016,81(10):C2381−C2389. doi: 10.1111/1750-3841.13419
|
[53] |
VERKEMPINCK S, SALVIA-TRUJILLO L, MOENS L, et al. Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree[J]. Journal of Functional Foods,2018,41:135−147. doi: 10.1016/j.jff.2017.12.030
|
[54] |
HONDA M, TAKASU S, NAKAGAWA K, et al. Differences in bioavailability and tissue accumulation efficiency of (all-E)-and (Z)-carotenoids:A comparative study[J]. Food Chemistry,2021,361:130119. doi: 10.1016/j.foodchem.2021.130119
|
[55] |
FERRUZZI M G, LUMPKIN J L, SCHWARTZ S J, et al. Digestive stability, micellarization, and uptake of β-carotene isomers by Caco-2 human intestinal cells[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2780−2785. doi: 10.1021/jf0530603
|
[56] |
AHERNE S A, DALY T, JIWAN M A, et al. Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model[J]. Food Research International,2010,43(5):1449−1454. doi: 10.1016/j.foodres.2010.04.026
|
[57] |
RODRIGUES D B, MARIUTTI L R B, MERCADANTE A Z. An in vitro digestion method adapted for carotenoids and carotenoid esters:Moving forward towards standardization[J]. Food & Function,2016,7(12):4992−5001.
|
[58] |
BOHN T, DESMARCHELIER C, EL S N, et al. β-carotene in the human body:Metabolic bioactivation pathways-from digestion to tissue distribution and excretion[J]. Proceedings of the Nutrition Society,2019,78(1):68−87. doi: 10.1017/S0029665118002641
|
[59] |
JOHRA F T, BEPARI A K, BRISTY A T, et al. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease[J]. Antioxidants,2020,9(11):1046. doi: 10.3390/antiox9111046
|
[60] |
MILLER A P, CORONEL J, AMENGUAL J. The role of β-carotene and vitamin a in atherogenesis:Evidences from preclinical and clinical studies[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2020,1865(11):158635. doi: 10.1016/j.bbalip.2020.158635
|
[61] |
RELEVY N Z, RÜHL R, HARARI A, et al. 9-cis β-carotene inhibits atherosclerosis development in female LDLR-/-mice[J]. Functional Foods in Health and Disease,2015,5(2):67−79. doi: 10.31989/ffhd.v5i2.172
|
[62] |
DEMING D M, TEIXEIRA S R, ERDMAN JR J W. All-trans β-carotene appears to be more bioavailable than 9-cis or 13-cis β-carotene in gerbils given single oral doses of each isomer[J]. The Journal of Nutrition,2002,132(9):2700−2708. doi: 10.1093/jn/132.9.2700
|
[63] |
BECERRA M O, CONTRERAS L M, LO M H, et al. Lutein as a functional food ingredient:Stability and bioavailability[J]. Journal of Functional Foods,2020,66:103771. doi: 10.1016/j.jff.2019.103771
|
[64] |
SAHIN K, GENCOGLU H, AKDEMIR F, et al. Lutein and zeaxanthin isomers may attenuate photo-oxidative retinal damage via modulation of g protein-coupled receptors and growth factors in rats[J]. Biochemical and Biophysical Research Communications,2019,516(1):163−170. doi: 10.1016/j.bbrc.2019.06.032
|
[65] |
GUNAL M Y, SAKUL A A, CAGLAYAN A B, et al. Protective effect of lutein/zeaxanthin isomers in traumatic brain injury in mice[J]. Neurotoxicity Research,2021,39(5):1543−1550. doi: 10.1007/s12640-021-00385-3
|
[66] |
BROTOSUDARMO T H P, LIMANTARA L, SETIYONO E, et al. Structures of astaxanthin and their consequences for therapeutic application[J]. International Journal of Food Science,2020,2020:2156582.
|
[67] |
VENUGOPALAN V, TRIPATHI S K, NAHAR P, et al. Characterization of canthaxanthin isomers isolated from a new soil dietzia sp. and their antioxidant activities[J]. Journal of Microbiol Biotechnol,2013,23(2):237−245. doi: 10.4014/jmb.1203.03032
|
[68] |
VENUGOPALAN V, VERMA N, GAUTAM H K, et al. 9-cis-canthaxanthin exhibits higher pro-apoptotic activity than all-trans-canthaxanthin isomer in THP-1 macrophage cells[J]. Free Radic Res,2009,43(2):100−105. doi: 10.1080/10715760802616668
|