SUN Xinyi, SUN Qingrui, LI Xiubo, et al. Research Progress of Carotenoid Isomerization and Its Effects on Biological Activity and Bioavailability[J]. Science and Technology of Food Industry, 2023, 44(21): 412−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100031.
Citation: SUN Xinyi, SUN Qingrui, LI Xiubo, et al. Research Progress of Carotenoid Isomerization and Its Effects on Biological Activity and Bioavailability[J]. Science and Technology of Food Industry, 2023, 44(21): 412−420. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100031.

Research Progress of Carotenoid Isomerization and Its Effects on Biological Activity and Bioavailability

More Information
  • Received Date: October 07, 2022
  • Available Online: September 05, 2023
  • Carotenoids are the most common lipid-soluble plant pigments in nature, which have the functions of antioxidation and prevention of many diseases. In general, most natural carotenoids exist in an all trans configuration, with low biological activity and bioavailability. Cis-isomerization of carotenoids is an important means to improve its application value. On the basis of expounding the isomerization reaction mechanism, this paper reviews the isomerization methods (thermo-isomerization, thermally induced catalytic isomerization, photoisomerization, etc.), factors affecting isomerization reaction, and the effect of isomerization on its biological activity and bioavailability under different evaluation methods. Finally, the problems in the process of carotenoid isomerization and future research directions are proposed.
  • [1]
    MAOKA T. Carotenoids as natural functional pigments[J]. Journal of Natural Medicines,2020,74(1):1−16. doi: 10.1007/s11418-019-01364-x
    [2]
    EGGERSDORFER M, WYSS A. Carotenoids in human nutrition and health[J]. Archives of Biochemistry and Biophysics,2018,652:18−26. doi: 10.1016/j.abb.2018.06.001
    [3]
    ELVIRA-TORALES L I, GARCíA-ALONSO J, PERIAGO-CASTóN M J. Nutritional importance of carotenoids and their effect on liver health:A review[J]. Antioxidants,2019,8(7):229. doi: 10.3390/antiox8070229
    [4]
    孙清瑞. 碘纳米粒催化番茄红素反—顺构型转化及纳米结构脂质载体[D]. 无锡:江南大学, 2016

    SUN Q R. E/Z isomerization of lycopene catalyzed by lodine-nanoparticlies and lycopene-loaded nanostructured lipid carriers[D]. Wuxi:Jiangnan University, 2016.
    [5]
    MÜLLER L, GOUPY P, FRÖHLICH K, et al. Comparative study on antioxidant activity of lycopene (Z)-isomers in different assays[J]. Journal of Agricultural and Food Chemistry,2011,59(9):4504−4511. doi: 10.1021/jf1045969
    [6]
    ZECHMEISTER L, TUZSON P. Spontaneous isomerization of lycopene[J]. Nature,1938,141(3562):249−250. doi: 10.1038/141249a0
    [7]
    HONDA M, MAEDA H, FUKAYA T, et al. Effects of Z-isomerization on the bioavailability and functionality of carotenoids:A review[J]. Progress in Carotenoid Research,2018:139−159.
    [8]
    徐媛. 红葡萄柚番茄红素加工降解机制及其定量构效关系研究[D]. 武汉:华中农业大学, 2013

    XU Y. Studies on degeradation mechanism of lycopene from red grapefruit during processing and quantitative structure-activity relationship[D]. Wuhan:Huazhong Agricultural University, 2013.
    [9]
    ZECHMEISTER L E R B. A stereochemical study of methylbixin[J]. Journal of the American Chemical Society,1944,66(3):322−330. doi: 10.1021/ja01231a002
    [10]
    LIANG X, MA C, YAN X, et al. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene[J]. Trends in Food Science & Technology,2019,93:185−196.
    [11]
    朱倩, 高瑞萍, 雷琳, 等. 番茄红素热异构化机制及其影响因素研究进展[J]. 食品科学,2018,39(15):310−315

    ZHU Q, GAO R P, LEI L. Mechanism and factors influencing thermal isomerization of lycopene:A review[J]. Food Science,2018,39(15):310−315.
    [12]
    HONDA M, TAKAHASHI N, KUWA T, et al. Spectral characterisation of Z-isomers of lycopene formed during heat treatment and solvent effects on the E/Z isomerisation process[J]. Food Chemistry,2015,171:323−329. doi: 10.1016/j.foodchem.2014.09.004
    [13]
    MURAKAMI K, HONDA M, WAHYUDIONO, et al. Thermal isomerization of (all-E)-lycopene and separation of the Z-isomers by using a low boiling solvent:Dimethyl ether[J]. Separation Science and Technology,2017,52(16):2573−2582. doi: 10.1080/01496395.2017.1374412
    [14]
    DINA B, GUANG-YING S, XUE-LING H, et al. Study on low-temperature preparation of high-purity lycopene isomers and their isomerization and degradation in edible oils[J]. Journal of Instrumental Analysis,2021,40(1):27−35.
    [15]
    ONO M, HONDA M, YASUDA K, et al. Production of β-carotene nanosuspensions using supercritical CO2 and improvement of its efficiency by Z-isomerization pre-treatment[J]. The Journal of Supercritical Fluids,2018,138:124−131. doi: 10.1016/j.supflu.2018.04.006
    [16]
    HONDA M, KAGEYAMA H, HIBINO T, et al. Synergistic effects of food ingredients and vegetable oils on thermal isomerization of lycopene[J]. Journal of Oleo Science,2020,69(12):1529−1540. doi: 10.5650/jos.ess20174
    [17]
    MILANOWSKA J, GRUSZECKI W I. Heat-induced and light-induced isomerization of the xanthophyll pigment zeaxanthin[J]. Journal of Photochemistry and Photobiology B:Biology,2005,80(3):178−186. doi: 10.1016/j.jphotobiol.2005.05.004
    [18]
    HONDA M, MURAKAMI K, ZHANG Y, et al. Rapid and continuous astaxanthin isomerization in subcritical ethanol[J]. Industrial & Engineering Chemistry Research,2021,60(39):14060−14068.
    [19]
    HONDA M. Application of E/Z-isomerization technology for enhancing processing efficiency, health-promoting effects, and usability of carotenoids:A review and future perspectives[J]. Journal of Oleo Science,2022,71(2):151−165. doi: 10.5650/jos.ess21338
    [20]
    HONDA M, MURAKAMI K, WATANABE Y, et al. The E/Z isomer ratio of lycopene in foods and effect of heating with edible oils and fats on isomerization of (all-E)-lycopene[J]. European Journal of Lipid Science and Technology,2017,119(8):1600389. doi: 10.1002/ejlt.201600389
    [21]
    HONDA M, KAGEYAMA H, HIBINO T, et al. Impact of global traditional seasonings on thermal Z-isomerization of (all-E)-lycopene in tomato puree[J]. LWT- Food Science and Technology,2019,116:108565. doi: 10.1016/j.lwt.2019.108565
    [22]
    HONDA M, MURAKAMI K, ZHANG Y, et al. High-efficiency lycopene isomerization with subcritical ethyl acetate in a continuous-flow reactor[J]. The Journal of Supercritical Fluids,2021,178:105383. doi: 10.1016/j.supflu.2021.105383
    [23]
    HONDA M, KAGEYAMA H, HIBINO T, et al. Chemical‐free approach for Z‐isomerization of lycopene in tomato powder:hot air and superheated steam heating above the melting point of lycopene[J]. European Journal of Lipid Science and Technology,2019,122(3):1900327.
    [24]
    HONDA M. Carotenoid isomers:A systematic review of the analysis, biological activity, physicochemical property, and methods for isomerization[J]. Studies in Natural Products Chemistry,2021,68:173−220.
    [25]
    WANG Q, YANG C, LIU Y, et al. Efficient E/ Z conversion of (all-E)-lycopene to Z-isomers with a high proportion of (5Z)-lycopene by metal salts[J]. LWT-Food Science and Technology,2022,160:113268. doi: 10.1016/j.lwt.2022.113268
    [26]
    ZHANG Y, HONDA M, KANDA H, et al. Enhanced production of β-carotene suspensions using supercritical CO2 via naturally occurring Z-isomerization-accelerating catalyst[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2020:012008.
    [27]
    GAO Y, KISPERT L D, KONOVALOVA T A, et al. Isomerization of carotenoids in the presence of MCM-41 molecular sieves:EPR and HPLC studies[J]. The Journal of Physical Chemistry B,2004,108(27):9456−9462. doi: 10.1021/jp036091e
    [28]
    HONDA M, KAGEYAMA H, HIBINO T, et al. Isomerization of commercially important carotenoids (lycopene, β-carotene, and astaxanthin) by natural catalysts:Isothiocyanates and polysulfides[J]. Journal of Agricultural and Food Chemistry,2020,68(10):3228−3237. doi: 10.1021/acs.jafc.0c00316
    [29]
    杨成. 含氧类胡萝卜素异构体的制备纯化, 吸收代谢及对肠道功能的影响[D]. 无锡:江南大学, 2018

    YANG C. Xanthophyll isomers:Rapid preparation, purification, metabolic fate and their effects on the intestinal function[D]. Wuxi:Jiangnan University, 2018.
    [30]
    LI D, XIAO Y, ZHANG Z, et al. Light-induced oxidation and isomerization of all-trans- β-cryptoxanthin in a model system[J]. Journal of Photochemistry and Photobiology B:Biology,2015,142:51−58. doi: 10.1016/j.jphotobiol.2014.11.003
    [31]
    MURAKAMI K, HONDA M, TAKEMURA R, et al. Effect of thermal treatment and light irradiation on the stability of lycopene with high Z-isomers content[J]. Food Chemistry,2018,250:253−258. doi: 10.1016/j.foodchem.2018.01.062
    [32]
    HONDA M, IGAMI H, KAWANA T, et al. Photosensitized E/Z isomerization of (all-E)-lycopene aiming at practical applications[J]. Journal of Agricultural and Food Chemistry,2014,62(47):11353−11356. doi: 10.1021/jf504502t
    [33]
    HONDA M, KAGEYAMA H, HIBINO T, et al. Efficient and environmentally friendly method for carotenoid extraction from paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts[J]. Process Biochemistry,2020,89:146−154. doi: 10.1016/j.procbio.2019.10.005
    [34]
    O'NEIL C A, SCHWARTZ S J. Photoisomerization of β-carotene by photosensitization with chlorophyll derivatives as sensitizers[J]. Journal of Agricultural and Food Chemistry,1995,43(3):631−635. doi: 10.1021/jf00051a014
    [35]
    HONDA M, WATANABE Y, MURAKAMI K, et al. Enhanced lycopene extraction from gac ( momordica cochinchinensis spreng.) by the Z‐isomerization induced with microwave irradiation pre‐treatment[J]. European Journal of Lipid Science and Technology,2018,120(2):1700293. doi: 10.1002/ejlt.201700293
    [36]
    HONDA M, SATO H, TAKEHARA M, et al. Microwave‐accelerated Z‐isomerization of (all‐E)‐lycopene in tomato oleoresin and enhancement of the conversion by vegetable oils containing disulfide compounds[J]. European Journal of Lipid Science and Technology,2018,120(7):1800060. doi: 10.1002/ejlt.201800060
    [37]
    CHIH-CHANG WEI, GAO G, KISPERT L D. Selected cis/trans isomers of carotenoids formed by bulk electrolysis and iron(III) chloride oxidation[J]. Journal of the Chemical Society, Perkin Transactions 2,1997,4:783−786.
    [38]
    G G, C W C, A J S, et al. Geometrical isomerization of carotenoids mediated by cation radical/dication formation[J]. The Journal of Physcial Chemisty,1996,100(13):5362−5366.
    [39]
    CHENG H M, KOUTSIDIS G, LODGE J K, et al. Lycopene and tomato and risk of cardiovascular diseases:A systematic review and meta-analysis of epidemiological evidence[J]. Critical Reviews in Food Science and Nutrition,2019,59(1):141−158. doi: 10.1080/10408398.2017.1362630
    [40]
    于颖, 张维, 谢凡, 等. 改善番茄红素生物利用度的研究进展[J]. 食品科学,2019,40(19):346−352 doi: 10.7506/spkx1002-6630-20181011-094

    ZHANG Y, ZHANG W, XIE F, et al. Progress in the improvement of lycopene bioavailability[J]. Food Science,2019,40(19):346−352. doi: 10.7506/spkx1002-6630-20181011-094
    [41]
    BöHM V, PUSPITASARI-NIENABER N L, FERRUZZI M G, et al. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin[J]. Journal of Agricultural and Food Chemistry,2002,50(1):221−226. doi: 10.1021/jf010888q
    [42]
    CAMPOS-LOZADA G, PéREZ-MARROQUíN X A, CALLEJAS-QUIJADA G, et al. The effect of high-intensity ultrasound and natural oils on the extraction and antioxidant activity of lycopene from tomato ( solanum lycopersicum) waste[J]. Antioxidants,2022,11(7):1404. doi: 10.3390/antiox11071404
    [43]
    LEVIN G, YESHURUN M, MOKADY S. In vivo antiperoxidative effect of 9‐cis β‐carotene compared with that of the all‐trans isomer[J]. Nutrition and Cancer,1997:293−297.
    [44]
    RODRIGUES E, MARIUTTI L R, CHISTé R C, et al. Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity:Application to carotenoids and structure-activity relationship[J]. Food Chemistry,2012,135(3):2103−2111. doi: 10.1016/j.foodchem.2012.06.074
    [45]
    HARARI A, HARATS D, MARKO D, et al. Supplementation with 9-cis β-carotene-rich alga dunaliella improves hyperglycemia and adipose tissue inflammation in diabetic mice[J]. Journal of Applied Phycology,2013,25(2):687−693. doi: 10.1007/s10811-012-9903-4
    [46]
    YANG C, FISCHER M, KIRBY C, et al. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities[J]. Food Chemistry,2018,249:66−76. doi: 10.1016/j.foodchem.2017.12.055
    [47]
    LIU X, CHEN X, LIU H, et al. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in caenorhabditis elegans[J]. Journal of Functional Foods,2018,44:127−136. doi: 10.1016/j.jff.2018.03.004
    [48]
    GENG T, BAO S, SUN X, et al. A clarification of concepts related to the digestion and absorption of carotenoids and a new standardized carotenoids bioavailability evaluation system[J]. Food Chemistry,2023,400:134060.
    [49]
    HONDA M, NAKAYAMA Y, NISHIKAWA S, et al. Z-isomers of lycopene exhibit greater liver accumulation than the all-E-isomer in mice[J]. Bioscience, Biotechnology, and Biochemistry,2020,84(2):428−431. doi: 10.1080/09168451.2019.1677144
    [50]
    COOPERSTONE J L, RALSTON R A, RIEDL K M, et al. Enhanced bioavailability of lycopene when consumed as cis‐isomers from tangerine compared to red tomato juice, a randomized, cross‐over clinical trial[J]. Molecular Nutrition & Food Research,2015,59(4):658−669.
    [51]
    FAILLA M L, CHITCHUMROONCHOKCHAI C, ISHIDA B K. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene[J]. The Journal of Nutrition,2008,138(3):482−486. doi: 10.1093/jn/138.3.482
    [52]
    SUN Q, YANG C, LI J, et al. Lycopene:Heterogeneous catalytic E/Z isomerization and in vitro bioaccessibility assessment using a diffusion model[J]. Journal of Food Science,2016,81(10):C2381−C2389. doi: 10.1111/1750-3841.13419
    [53]
    VERKEMPINCK S, SALVIA-TRUJILLO L, MOENS L, et al. Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree[J]. Journal of Functional Foods,2018,41:135−147. doi: 10.1016/j.jff.2017.12.030
    [54]
    HONDA M, TAKASU S, NAKAGAWA K, et al. Differences in bioavailability and tissue accumulation efficiency of (all-E)-and (Z)-carotenoids:A comparative study[J]. Food Chemistry,2021,361:130119. doi: 10.1016/j.foodchem.2021.130119
    [55]
    FERRUZZI M G, LUMPKIN J L, SCHWARTZ S J, et al. Digestive stability, micellarization, and uptake of β-carotene isomers by Caco-2 human intestinal cells[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2780−2785. doi: 10.1021/jf0530603
    [56]
    AHERNE S A, DALY T, JIWAN M A, et al. Bioavailability of β-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model[J]. Food Research International,2010,43(5):1449−1454. doi: 10.1016/j.foodres.2010.04.026
    [57]
    RODRIGUES D B, MARIUTTI L R B, MERCADANTE A Z. An in vitro digestion method adapted for carotenoids and carotenoid esters:Moving forward towards standardization[J]. Food & Function,2016,7(12):4992−5001.
    [58]
    BOHN T, DESMARCHELIER C, EL S N, et al. β-carotene in the human body:Metabolic bioactivation pathways-from digestion to tissue distribution and excretion[J]. Proceedings of the Nutrition Society,2019,78(1):68−87. doi: 10.1017/S0029665118002641
    [59]
    JOHRA F T, BEPARI A K, BRISTY A T, et al. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease[J]. Antioxidants,2020,9(11):1046. doi: 10.3390/antiox9111046
    [60]
    MILLER A P, CORONEL J, AMENGUAL J. The role of β-carotene and vitamin a in atherogenesis:Evidences from preclinical and clinical studies[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2020,1865(11):158635. doi: 10.1016/j.bbalip.2020.158635
    [61]
    RELEVY N Z, RÜHL R, HARARI A, et al. 9-cis β-carotene inhibits atherosclerosis development in female LDLR-/-mice[J]. Functional Foods in Health and Disease,2015,5(2):67−79. doi: 10.31989/ffhd.v5i2.172
    [62]
    DEMING D M, TEIXEIRA S R, ERDMAN JR J W. All-trans β-carotene appears to be more bioavailable than 9-cis or 13-cis β-carotene in gerbils given single oral doses of each isomer[J]. The Journal of Nutrition,2002,132(9):2700−2708. doi: 10.1093/jn/132.9.2700
    [63]
    BECERRA M O, CONTRERAS L M, LO M H, et al. Lutein as a functional food ingredient:Stability and bioavailability[J]. Journal of Functional Foods,2020,66:103771. doi: 10.1016/j.jff.2019.103771
    [64]
    SAHIN K, GENCOGLU H, AKDEMIR F, et al. Lutein and zeaxanthin isomers may attenuate photo-oxidative retinal damage via modulation of g protein-coupled receptors and growth factors in rats[J]. Biochemical and Biophysical Research Communications,2019,516(1):163−170. doi: 10.1016/j.bbrc.2019.06.032
    [65]
    GUNAL M Y, SAKUL A A, CAGLAYAN A B, et al. Protective effect of lutein/zeaxanthin isomers in traumatic brain injury in mice[J]. Neurotoxicity Research,2021,39(5):1543−1550. doi: 10.1007/s12640-021-00385-3
    [66]
    BROTOSUDARMO T H P, LIMANTARA L, SETIYONO E, et al. Structures of astaxanthin and their consequences for therapeutic application[J]. International Journal of Food Science,2020,2020:2156582.
    [67]
    VENUGOPALAN V, TRIPATHI S K, NAHAR P, et al. Characterization of canthaxanthin isomers isolated from a new soil dietzia sp. and their antioxidant activities[J]. Journal of Microbiol Biotechnol,2013,23(2):237−245. doi: 10.4014/jmb.1203.03032
    [68]
    VENUGOPALAN V, VERMA N, GAUTAM H K, et al. 9-cis-canthaxanthin exhibits higher pro-apoptotic activity than all-trans-canthaxanthin isomer in THP-1 macrophage cells[J]. Free Radic Res,2009,43(2):100−105. doi: 10.1080/10715760802616668
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (229) PDF downloads (51) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return