Citation: | YANG Shu, HUANG Xuying, TU Han, et al. Anti-fatigue Effects of Mulberry Anthocyanins in Mice[J]. Science and Technology of Food Industry, 2023, 44(16): 377−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090071. |
[1] |
ZHOU S S, JIANG J G. Anti-fatigue effects of active ingredients from traditional Chinese medicine: a review[J]. Current Medicinal Chemistry,2019,26(10):1833−1848. doi: 10.2174/0929867324666170414164607
|
[2] |
PENG X, GAO L, AIBAI S. Antifatigue effects of Anshenyizhi compound in acute excise-treated mouse via modulation of AMPK/PGC-1α-related energy metabolism and Nrf2/ARE-mediated oxidative stress[J]. Journal of Food Science,2020,85(6):1897−1906. doi: 10.1111/1750-3841.15149
|
[3] |
康鹏, 李国薇, 马宏祥, 等. 运动营养食品及其抗疲劳活性成分研究进展[J]. 食品安全质量检测学报,2021,12(23):9157−9164. [KANG P, LI G W, MA H Y, et al. Research progress of sports nutrition food and its anti-fatigue bioactive components[J]. Journal of Food Safety and Quality,2021,12(23):9157−9164. doi: 10.3969/j.issn.2095-0381.2021.23.spaqzljcjs202123025
KANG P, LI G W, MA H Y, et al. Research progress of sports nutrition food and its anti-fatigue bioactive components[J]. Journal of Food Safety and Quality, 2021, 12(23): 9157-9164. doi: 10.3969/j.issn.2095-0381.2021.23.spaqzljcjs202123025
|
[4] |
靳铁柱. 响应面法优化桑葚多糖纯化工艺及不同产物的抗运动疲劳活性比较[J]. 保鲜与加工,2022,22(4):67−73. [JIN T Z. Optimization of purification process of mulberry polysaccharide by response surface methodology and comparison of anti-exercise fatigue activity of different products[J]. Storage and Process,2022,22(4):67−73. doi: 10.3969/j.issn.1009-6221.2022.04.009
JIN T Z. Optimization of purification process of mulberry polysaccharide by response surface methodology and comparison of anti-exercise fatigue activity of different products[J]. Storage and Process, 2022, 22(4): 67-73. doi: 10.3969/j.issn.1009-6221.2022.04.009
|
[5] |
马永昆, 许满青, 陈必祥, 等. 桑椹果醋营养功能功效解读[J]. 食品安全质量检测学报,2021,12(6):2117−2124. [MA Y K, XU M Q, CHEN B X, et al. Interpretation of the nutritional function of mulberry vinegar[J]. Journal of Food Safety and Quality,2021,12(6):2117−2124. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.06.011
MA Y K, XU M Q, CHEN B X, et al. Interpretation of the nutritional function of mulberry vinegar[J]. Journal of Food Safety and Quality, 2021, 12(6): 2117-2124. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.06.011
|
[6] |
马识淳, 韩伟. 襄荷桑葚复合饮料研制及其抗运动疲劳作用研究[J]. 中国食品添加剂,2021,32(8):67−75. [MA S C, HAN W. Development and anti-fatigue effect of compound beverage of Zingiber strioatum and mulberry[J]. China Food Additive,2021,32(8):67−75. doi: 10.19804/j.issn1006-2513.2021.08.010
MA S C, HAN W. Development and anti-fatigue effect of compound beverage of Zingiber strioatum and mulberry[J]. China Food Additive, 2021, 32(8): 67-75. doi: 10.19804/j.issn1006-2513.2021.08.010
|
[7] |
薛宏坤, 李鹏程, 钟雪, 等. 高速逆流色谱分离纯化桑葚花色苷及其抗氧化活性[J]. 食品科学,2020,41(15):96−104. [XUE H K, LI P C, ZHONG X, et al. Separation and purification of anthocyanins from mulberry fruit by high-speed counter-current chromatography and their antioxidant activity[J]. Food Science,2020,41(15):96−104. doi: 10.7506/spkx1002-6630-20190715-193
XUE H K, LI P C, ZHONG X, et al. Separation and purification of anthocyanins from mulberry fruit by high-speed counter-current chromatography and their antioxidant activity[J]. Food Science, 2020, 41(15): 96-104. doi: 10.7506/spkx1002-6630-20190715-193
|
[8] |
FANG J L, JIA S S, LIN Y, et al. Extraction, purification, content analysis and hypoglycemic effect of mulberry marc anthocyanin[J]. Pharmacognosy Magazine,2020,16:68−75. doi: 10.4103/pm.pm_169_19
|
[9] |
赵秀玲, 范道春. 桑椹的生理活性成分、提取检测及药理作用研究进展[J]. 药物分析杂志,2017,37(3):378−385. [ZHAO X L, FAN D C. Review of physiological active components, extraction and detection methods and pharmacological bioactivities of mulberry[J]. Chinese Journal of Pharmaceutical Analysis,2017,37(3):378−385. doi: 10.16155/j.0254-1793.2017.03.02
ZHAO X L, FAN D C. Review of physiological active components, extraction and detection methods and pharmacological bioactivities of mulberry[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(3): 378-385. doi: 10.16155/j.0254-1793.2017.03.02
|
[10] |
罗晓玲, 徐嘉红, 杨武斌, 等. 蓝莓花色苷抗氧化功能及稳定性研究进展[J]. 食品工业科技,2018,39(4):312−317. [LUO X L, XU J H, YANG W B, et al. Research progress in antioxidant function and stability of blueberry anthocyanins[J]. Science and Technology of Food Industry,2018,39(4):312−317. doi: 10.13386/j.issn1002-0306.2018.04.057
LUO X L, XU J H, YANG W B, et al. Research progress in antioxidant function and stability of blueberry anthocyanins[J]. Science and Technology of Food Industry, 2018, 39(4): 312-317. doi: 10.13386/j.issn1002-0306.2018.04.057
|
[11] |
YANG S, WAN C, LI X Y, et al. Investigation on the biological activity of anthocyanins and polyphenols in blueberry[J]. Food Science,2021,86(2):614−627. doi: 10.1111/1750-3841.15598
|
[12] |
WU T, YIN J, ZHANG G, et al. Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice[J]. Molecular Nutrition & Food Research,2016,60:687−694.
|
[13] |
CHEN Y, DU F, WANG W, et al. Large-scale isolation of high-purity anthocyanin monomers from mulberry fruits by combined chromatographic techniques[J]. Journal of Separation Science,2017,40(17):3506−3512. doi: 10.1002/jssc.201700471
|
[14] |
ZHOU Y J, SONG J L, XU Q, et al. Optimization and application of HPLC for simultaneous separation of six well-known major anthocyanins in blueberry[J]. Preparative Biochemistry & Biotechnology,2021,51(10):961−970.
|
[15] |
SURIYAPROM S, KAEWKOD T, PROMPUTTHA I, et al. Evaluation of antioxidant and antibacterial activities of white mulberry (Morus alba L. ) fruit extracts[J]. Plants,2021,10(12):2736. doi: 10.3390/plants10122736
|
[16] |
郑传痴, 杨艳, 韦余, 等. 金丝桃苷对小鼠的抗疲劳作用及机制研究[J]. 食品工业科技,2021,42(23):350−355. [ZHENG C C, YAN Y, WEI Y, et al. Study on the effects and mechanism of hyperoside on anti-fatigue in mice[J]. Science and Technology of Food Industry,2021,42(23):350−355. doi: 10.13386/j.issn1002-0306.2021010227
ZHENG C C, YAN Y, WEI Y, et al. Study on the effects and mechanism of hyperoside on anti-fatigue in mice[J]. Science and Technology of Food Industry, 2021, 42(23): 350-355. doi: 10.13386/j.issn1002-0306.2021010227
|
[17] |
程美玲, 黄鑫, 安曈昕, 等. 玫瑰花青素对小鼠抗疲劳及抗氧化研究[J]. 云南农业大学学报(自然科学),2021,36(6):956−961. [CHEN M L, HUANG X, AN T X, et al. Study on anti-fatigue and anti-oxidation effects of rose anthocyanin in mice[J]. Journal of Yunnan Agricultural University (Natural Science),2021,36(6):956−961.
CHEN M L, HUANG X, AN T X, et al. Study on anti-fatigue and anti-oxidation effects of rose anthocyanin in mice[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(6): 956-961.
|
[18] |
ZHANG L, FAN G, KHAN M A, et al. Ultrasonic-assisted enzymatic extraction and identification of anthocyanin components from mulberry wine residues[J]. Food Chemistry,2020,323:126714. doi: 10.1016/j.foodchem.2020.126714
|
[19] |
ZHANG S, LIU B, YAN G, et al. Chemical properties and anti-fatigue effect of polysaccharide from Pholiota nameko[J]. Journal of Food Biochemistry,2022,46:e14015.
|
[20] |
MA C, DENG Y, XIAO R, et al. Anti-fatigue effect of phlorizin on exhaustive exercise-induced oxidative injury mediated by Nrf2/ARE signaling pathway in mice[J]. European Journal of Pharmacology,2022,918:174563. doi: 10.1016/j.ejphar.2021.174563
|
[21] |
LI Y, DENG Y, LI Z, et al. Composition, physicochemical properties, and anti-fatigue activity of water-soluble okra (Abelmoschus esculentus) stem pectins[J]. International Journal of Biological Macromolecules,2020,165:2630−2639. doi: 10.1016/j.ijbiomac.2020.10.167
|
[22] |
QIAO Y B, YE Y, CAI T X, et al. Anti-fatigue activity of the polysaccharides isolated from Ribes stenocarpum Maxim[J]. Journal of Functional Foods,2022,89:104947. doi: 10.1016/j.jff.2022.104947
|
[23] |
HU M, DU J, DU L D, et al. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim.) epicarp in mice[J]. Journal of Functional Foods,2020,65:103725. doi: 10.1016/j.jff.2019.103725
|
[24] |
JIN S H, CAI R R, CHENG F R, et al. Content determination and anti-fatigue effect of the purified anthocyanin from purple Daucus carota[J]. Pharmacognosy Magazine,2020,16(71):670−674. doi: 10.4103/pm.pm_452_19
|
[25] |
HE W, GUO F, JIANG Y, et al. Enzymatic hydrolysates of soy protein promote the physicochemical stability of mulberry anthocyanin extracts in food processing[J]. Food Chemistry,2022,386:132811. doi: 10.1016/j.foodchem.2022.132811
|
[26] |
ZHU H, XU W, WANG N, et al. Anti-fatigue effect of Lepidium meyenii Walp. (Maca) on preventing mitochondria-mediated muscle damage and oxidative stress in vivo and vitro[J]. Food Function,2021,12(7):3132−3141. doi: 10.1039/D1FO00383F
|
[27] |
HAO J, GAO Y, XUE J, et al. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry[J]. Foods,2022,11(8):1170. doi: 10.3390/foods11081170
|
[28] |
CHEN T, SHUANG F F, FU Q Y, et al. Evaluation of the chemical composition and antioxidant activity of mulberry (Morus alba L.) fruits from different varieties in China[J]. Molecules,2022,27(9):2688. doi: 10.3390/molecules27092688
|
[29] |
ZHU S, YANG W, LIN Y, et al. Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate[J]. Journal of Functional Foods,2021,79:104412. doi: 10.1016/j.jff.2021.104412
|
[30] |
ZHANG X, JING S, LIN H, et al. Anti-fatigue effect of anwulignan via the NRF2 and PGC-1α signaling pathway in mice[J]. Food Function,2019,10(12):7755−7766. doi: 10.1039/C9FO01182J
|
[31] |
张馨芸, 林慧娇, 李欣, 等. 五味子酯甲通过调节肝脏Nrf2/ARE抗氧化通路改善小鼠疲劳的作用[J]. 食品科学,2020,41(1):190−195. [ZHANG X Y, LIN H Q, LI X, et al. Schisantherin a improves fatigue in mice by regulating the Nrf2/ARE antioxidant pathway in liver[J]. Food Science,2020,41(1):190−195. doi: 10.7506/spkx1002-6630-20181120-230
ZHANG X Y, LIN H Q, LI X, et al. Schisantherin a improves fatigue in mice by regulating the Nrf2/ARE antioxidant pathway in liver[J]. Food Science, 2020, 41(1): 190-195. doi: 10.7506/spkx1002-6630-20181120-230
|
[32] |
蓝瑞高, 梁益军. 人参皂苷CK对力竭游泳大鼠抗疲劳作用及骨骼肌氧化应激的影响[J]. 云南农业大学学报(自然科学),2022,37(3):491−496. [LAN R G, LIANG Y J. Effects of ginsenoside CK on anti-fatigue and oxidative stress of skeletal muscle in exhaustive swimming rats[J]. Journal of Yunnan Agricultural University (Natural Science),2022,37(3):491−496. doi: 10.12101/j.issn.1004-390X(n).202109040
LAN R G, LIANG Y J. Effects of ginsenoside CK on anti-fatigue and oxidative stress of skeletal muscle in exhaustive swimming rats[J]. Journal of Yunnan Agricultural University (Natural Science), 2022, 37(3): 491-496. doi: 10.12101/j.issn.1004-390X(n).202109040
|
[33] |
BAI X, LIAN Y, HU C, et al. Cyanidin-3-glucoside protects against high glucose-induced injury in human nucleus pulposus cells by regulating the Nrf2/HO-1 signaling[J]. Journal of Applied Toxicology,2022,42(7):1137−1145. doi: 10.1002/jat.4281
|
[34] |
SONG Y, HUANG L, YU J. Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling[J]. Journal of Neuroimmunology,2016,301:1−6. doi: 10.1016/j.jneuroim.2016.11.001
|
[35] |
ALI T, KIM T, REHMAN S U, et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer's disease[J]. Molecular Neurobiology,2018,55(7):6076−6093. doi: 10.1007/s12035-017-0798-6
|