TANG Cuie, ZHOU Peiyuan, LIU Yanzhao, et al. Optimization of Mica Processing Method Based on Atomic Force Microscopy to Study the Molecular Structure of Xanthan Gum[J]. Science and Technology of Food Industry, 2023, 44(14): 60−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080260.
Citation: TANG Cuie, ZHOU Peiyuan, LIU Yanzhao, et al. Optimization of Mica Processing Method Based on Atomic Force Microscopy to Study the Molecular Structure of Xanthan Gum[J]. Science and Technology of Food Industry, 2023, 44(14): 60−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080260.

Optimization of Mica Processing Method Based on Atomic Force Microscopy to Study the Molecular Structure of Xanthan Gum

More Information
  • Received Date: August 23, 2022
  • Available Online: May 19, 2023
  • Atomic Force Microscopy imaging is generally used for investigating the molecular structure of polysaccharides. However, for ionic polysaccharides, it is still difficult to obtain clear images with monolayer structure under the limited observation region based on the reported sample treatment methods. Taking xanthan gum as the typical ionic polysaccharide, in order to improve the image quality without changing the structure of polysaccharide, the sample preparation procedures were optimized, including sample concentration, variety and concentration of salt ions, and treatment time. The results showed that monolayer structure of xanthan was observed on clear mica when xanthan concentration was 1~5 μg/mL. However, the observed monolayer structure became much less when the observation region was 15 μm×15 μm. Then, the mica was treated and the treatment conditions were optimized. The optimized treatment conditions were selected as 2 min treatment by using 0.5 mmol/L calcium chloride solution or 0.5 min treatment by using 2 mmol/L calcium chloride solution. Under this condition, the molecular structure of 5 μg/mL xanthan gum was observed. The results illustrated that the number of monolayer xanthan gum molecular chains greatly increased within the observation region of 3 μm×3 μm, as compared with that on the untreated mica. Meanwhile, the treatment of mica could keep the height and morphology of monolayer structure of xanthan gum. In addition, the images of monolayer structure with more homogenous distribution could be obtained by increasing the drying temperature for mica. This study could provide an experimental reference for the sample preparation of other anionic polysaccharide in AFM imaging.
  • [1]
    WANG S, ZHAO L, LI Q, et al. Impact of Mg2+, K+, and Na+ on rheological properties and chain conformation of soy hull soluble polysaccharide[J]. Food Hydrocolloids,2019,92:218−227. doi: 10.1016/j.foodhyd.2019.01.055
    [2]
    GLICKSMAN M. Food hydrocolloids[M]. Boca Raton: CRC Press, 2021.
    [3]
    黄超伯, 游朝群, 熊燃华, 等. 天然多糖在生物医用材料领域的应用研究进展[J]. 林业工程学报,2021,6(3):1−8. [HUANG C B, YOU C Q, XIONG R H, et al. Research progress of natural polysaccharide in the application of biomedical materials[J]. Journal of Forestry Engineering,2021,6(3):1−8.

    HUANG C B, YOU C Q, XIONG R H, et al. Research progress of natural polysaccharide in the application of biomedical materials[J]. Journal of Forestry Engineering, 2021, 6(3): 1-8.
    [4]
    陈淑芳, 李明星, 蒙文萍, 等. 海藻多糖在化妆品中的应用研究进展[J]. 海洋科学,2021,45(3):143−151. [CHEN S F, LI M X, MENG W P, et al. Application of seaweed polysaccharides in cosmetics[J]. Marine Sciences,2021,45(3):143−151.

    CHEN S F, LI M X, MENG W P, et al. Application of seaweed polysaccharides in cosmetics[J]. Marine Sciences, 2021, 45(3): 143-151.
    [5]
    刘思扬, 陆雅琦, 海日汉, 等. 功能性植物多糖及其应用研究进展[J]. 食品工业科技, 2022, 43(21): 444−453. DOI: 10.13386/j.issn1002-0306.2021110234 .

    LIU S Y, LU Y Q, HAI R H, et al. Research progress on plant functional polysaccharides and its application[J]. Science and Technology of Food Industry, 2022, 43(21): 444−453. DOI: 10.13386/j.issn1002-0306.2021110234.
    [6]
    王文丽, 张金玲, 魏亚宁, 等. 天然多糖提取、纯化及生物活性研究进展[J]. 食品工业科技, 2022, 43(22): 470−480.

    WANG W L, ZHANG J L, WEI Y N, et al. Extraction, purification, and bioactivity of natural polysaccharides: A review [J]. Science and Technology of Food Industry, 2022, 43(22): 470−480.
    [7]
    杨莉, 陈文宁, 郑娟霞, 等. 海藻多糖的提取、分离纯化及其在食品工业的应用[J]. 食品工业科技,2021,42(9):365−372. [YANG L, CHEN W N, ZHENG J X, et al. Extraction, isolation and purification of seaweed polysaccharide and its application in food industry[J]. Science and Technology of Food Industry,2021,42(9):365−372. doi: 10.13386/j.issn1002-0306.2019110241

    YANG L, CHEN W N, ZHENG J X, et al. Extraction, isolation and purification of seaweed polysaccharide and its application in food industry [J]. Science and Technology of Food Industry, 2021, 42(9): 365-372. doi: 10.13386/j.issn1002-0306.2019110241
    [8]
    HAMDANI A M, WANI I A, BHAT N A. Sources, structure, properties and health benefits of plant gums: A review[J]. International Journal of Biological Macromolecules,2019,135:46−61. doi: 10.1016/j.ijbiomac.2019.05.103
    [9]
    FUNAMI T. Atomic force microscopy imaging of food polysaccharides in relation to rheological properties[J]. Food Science and Technology Research,2010,16(1):13−22. doi: 10.3136/fstr.16.13
    [10]
    邵丽, 吴正钧, 张灏, 等. 鼠李糖乳杆菌胞外多糖S2的原子力显微镜观察[J]. 食品科学,2015,36(13):43−47. [SHAO L, WU Z J, ZHANG H, et al. Observation of exopolysaccharide s2 from Lactobacillus rhamnosus kf5 using atomic force microscopy[J]. Food Science,2015,36(13):43−47. doi: 10.7506/spkx1002-6630-201513009

    SHAO L, WU Z J, ZHANG H, et al. Observation of exopolysaccharide s2 from lactobacillus rhamnosus kf5 using atomic force microscopy[J]. Food Science, 2015, 36(13): 43-47. doi: 10.7506/spkx1002-6630-201513009
    [11]
    FUNAMI T. Atomic force microscopy imaging of food polysaccharides[J]. Food Science and Technology Research,2010,16(1):1−12. doi: 10.3136/fstr.16.1
    [12]
    LI K, ZHAO L-S, SUN H-M, et al. Capsular polysaccharide production from Zunongwangia profunda SM-A87 monitored at single cell level by atomic force microscopy[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2018,155:44−49. doi: 10.1016/j.dsr2.2017.08.009
    [13]
    WANG J, NIE S. Application of atomic force microscopy in microscopic analysis of polysaccharide[J]. Trends in Food Science & Technology,2019,87:35−46.
    [14]
    WU J, DENG X, ZHANG Y, et al. Application of atomic force microscopy in the study of polysaccharide[J]. Agricultural Sciences in China,2009,8(12):1458−1465. doi: 10.1016/S1671-2927(08)60359-4
    [15]
    ULAPANE S, BORKOWSKI A, OKEOWO M, et al. Fabrication of micro and nano sized metal structures on silicon and mica substrates: An atomic force microscope (AFM) and particle lithography (PL) approach[J]. Abstracts of Papers of the American Chemical Society, 2018, 255.
    [16]
    ZHANG H, YANG L, ZHU D, et al. Conformational analysis of polysaccharide from soybean hull based on atomic force microscope and rheological properties[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(9):38−46.
    [17]
    MATH R K, REDDY S, YUN H D, et al. Modeling the clay minerals-enzyme binding by fusion fluorescent proteins and under atomic force microscope[J]. Microscopy Research and Technique,2019,82(6):884−891. doi: 10.1002/jemt.23233
    [18]
    隋振全, 毛金超, 徐桂云, 等. 天然生物质材料的制备、性质与应用(Ⅰ)——自然界唯一的碱性多糖: 甲壳素/壳聚糖[J]. 日用化学工业,2022,52(1):7−14. [SUI Z Q, MAO J C, XU G Y, et al. Preparation, properties and applications of natural biomass materials (Ⅰ) The unique alkaline polysaccharide in nature: Chitin/chitosan[J]. China Surfactant Detergent & Cosmetics,2022,52(1):7−14.

    SUI Z Q, MAO J C, XU G Y, et al. Preparation, properties and applications of natural biomass materials (Ⅰ) The unique alkaline polysaccharide in nature: Chitin/chitosan[J]. China Surfactant Detergent & Cosmetics, 2022, 52(1): 7-14.
    [19]
    PETRI D F S. Xanthan gum: A versatile biopolymer for biomedical and technological applications[J]. Journal of Applied Polymer Science, 2015, 132(23): 42035-42048.
    [20]
    CAI X R, DU X F, ZHU G L, et al. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations[J]. Food Hydrocolloids, 2020, 105.
    [21]
    MCDONALD S, ELBOURNE A, WARR G G, et al. Metal ion adsorption at the ionic liquid-mica interface[J]. Nanoscale,2016,8(2):906−914. doi: 10.1039/C5NR05833C
    [22]
    KIRBY A R, MACDOUGALL A J, MORRIS V J. Atomic force microscopy of tomato and sugar beet pectin molecules[J]. Carbohydrate Polymers,2008,71(4):640−647. doi: 10.1016/j.carbpol.2007.07.014
    [23]
    SANTO K P, FABIJANIC K I, CHENG C Y, et al. Modeling of the effects of metal complexation on the morphology and rheology of xanthan gum polysaccharide solutions[J]. Macromolecules,2021,54(18):8675−8692. doi: 10.1021/acs.macromol.1c01328
    [24]
    XIAO M, JIANG M F, WU K, et al. Investigation on curdlan dissociation by heating in water[J]. Food Hydrocolloids,2017,70:57−64. doi: 10.1016/j.foodhyd.2017.03.018
    [25]
    HABIBI H, KHOSRAVI-DA R K. Effective variables on production and structure of xanthan gum and its food applications: A review[J]. Biocatalysis & Agricultural Biotechnology,2017,10:130−140.
    [26]
    GULREZ S K H, AL-ASSAF S, FANG Y P, et al. Revisiting the conformation of xanthan and the effect of industrially relevant treatments[J]. Carbohydrate Polymers,2012,90(3):1235−1243. doi: 10.1016/j.carbpol.2012.06.055
    [27]
    WU M M, SHI Z Z, MING Y, et al. Thermostable and rheological properties of natural and genetically engineered xanthan gums in different solutions at high temperature[J]. International Journal of Biological Macromolecules,2021,182:1208−1217. doi: 10.1016/j.ijbiomac.2021.05.008
    [28]
    WURM F, RIETZLER B, PHAM T, et al. Multivalent ions as reactive crosslinkers for biopolymers-a review[J]. Molecules, 2020, 25(8): 1840.
    [29]
    SARRAF M, NAJI-TABASI S, BEIG-BABAEI A. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum[J]. Food Science & Nutrition,2021,9(12):6728−6736.
    [30]
    DONG L Y, JIAO F, QIN W Q, et al. Selective flotation of scheelite from calcite using xanthan gum as depressant[J]. Minerals Engineering,2019,138:14−23. doi: 10.1016/j.mineng.2019.04.030
    [31]
    TAKO M, NAKAMURA S. Rheological properties of ca salt of xanthan in aqueous-media[J]. Agricultural and Biological Chemistry,1987,51(11):2919−2923.
  • Cited by

    Periodical cited type(8)

    1. 张全通,郑尧,杨柳,张帅帅,郭全友. 计算机视觉结合卷积神经网络快速检测南极磷虾粉中的虾青素含量. 食品工业科技. 2025(03): 11-18 . 本站查看
    2. 刘鑫,马本学,李玉洁,陈金成,喻国威. 基于改进YOLOv7-ByteTrack的干制哈密大枣缺陷检测与计数系统. 农业工程学报. 2024(03): 303-312 .
    3. 贾雅欣,李传峰,罗华平,吴明清. 基于边缘轮廓定积分测量红枣体积的研究. 塔里木大学学报. 2024(01): 75-83 .
    4. 朱丽娟. 基于机器视觉的红枣裂纹特征提取. 科技风. 2024(10): 17-19 .
    5. 吴思,诸定莲,鲁梦瑶,万以磊,高亮亮,陈龙,汤卫荣,吴文彪. 基于机器视觉的大闸蟹自动分级分选设备研究与开发. 扬州大学学报(农业与生命科学版). 2024(04): 137-146 .
    6. 汤文祺,曹玉华,李应果. 基于机器视觉的一品红自动分级方法研究. 现代农业装备. 2024(05): 53-58 .
    7. 赵晓梅,李洪港. 基于X射线图像的金属腐蚀深度估计方法. 山东冶金. 2023(05): 25-27 .
    8. 蒋平. 一种快速红枣表面缺陷识别方法. 大众标准化. 2023(23): 55-57 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (140) PDF downloads (9) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return