LIU Siqi, FENG Guohong, LIU Zhongshen, et al. An Anthocyanin Prediction Model of Blueberry Pomace Based on Stacked Supervised Autoencoders[J]. Science and Technology of Food Industry, 2023, 44(10): 304−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070227.
Citation: LIU Siqi, FENG Guohong, LIU Zhongshen, et al. An Anthocyanin Prediction Model of Blueberry Pomace Based on Stacked Supervised Autoencoders[J]. Science and Technology of Food Industry, 2023, 44(10): 304−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070227.

An Anthocyanin Prediction Model of Blueberry Pomace Based on Stacked Supervised Autoencoders

More Information
  • Received Date: July 19, 2022
  • Available Online: March 11, 2023
  • Based on the visible and near-infrared reflectance spectroscopy technique, stacked supervised autoencoders (SSAE) in deep learning were used to model the anthocyanin content of blueberry pomace. First, preprocessing and feature screening for spectral data were performed. With the minimum value of prediction set root mean square error (RMSEP) of the preset SSAE model as the standard, 178 characteristic wavelengths were selected. The absorbance of the selected characteristic wavelength was used as the input to the SSAE model. The anthocyanin content of blueberry pomace was used as the output. By exploring the activation parameters, node number, training times and learning rate of the SSAE model, the optimal parameters of SSAE were obtained, namely, the activation function of rule, the structure of 178-60-5-1, the training times of 70, and the learning rate of 0.01. The training set root mean square error (RMSEC), prediction set root mean square error (RMSEP), and prediction set correlation coefficient (Rp) were selected as the evaluation criteria. The RMSEC, RMSEP, and Rp of the established model were 1.0500, 0.3835, and 0.9042, respectively. Compared with the classic regression prediction model extreme learning machine (ELM), least squares support vector regression (LSSVR) and partial least squares regression (PLSR) algorithm, the prediction accuracy of the SSAE model was higher. Therefore, the combination of the SSAE model with visible and near-infrared reflectance spectroscopy proved to be effective in predicting anthocyanin content of blueberry pomace.
  • [1]
    高明明, 肖月欢, 王幸, 等. 我国蓝莓食品加工现状分析[J]. 保鲜与加工,2017,17(3):111−117. [GAO Mingming, XIAO Yuehuan, WANG Xing, et al. Analysis on the status quo of blueberry food processing in my country[J]. Storage and Process,2017,17(3):111−117. doi: 10.3969/j.issn.1009-6221.2017.03.021
    [2]
    张昌容, 李志, 何永福, 等. 蓝莓果渣主要功能性成分及综合利用研究进展[J]. 食品科技,2021,46(6):110−111. [ZHANG Changrong, LI Zhi, HE Yongzhi, et al. Research progress on main functional components and comprehensive utilization of blueberry pomace[J]. Food Science and Technology,2021,46(6):110−111. doi: 10.13684/j.cnki.spkj.2021.06.019
    [3]
    韩鹏祥, 张蓓, 冯叙桥, 等. 蓝莓的营养保健功能及其开发利用[J]. 食品工业科技,2015,36(6):370−375,379. [HAN Pengxiang, ZHANG Pei, FENG Xuqiao, et al. Nutrition and health care function of blueberry and its development and utilization[J]. Science and Technology of Food Industry,2015,36(6):370−375,379.
    [4]
    雷良波, 杨浩, 陈军李, 等. 蓝莓果渣开发利用研究进展[J]. 中国酿造,2017,36(10):17−22. [LEI Liangbo, YANG Hao, CHEN Junjie, et al. Research progress on development and utilization of blueberry pomace[J]. China Brewing,2017,36(10):17−22. doi: 10.11882/j.issn.0254-5071.2017.10.005
    [5]
    JIE D F, XIE L J, FU X P, et al. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique[J]. Journal of Food Engineering,2013,118(4):387−392. doi: 10.1016/j.jfoodeng.2013.04.027
    [6]
    JUAN F, TERESA G, JAVIER T, et al. Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening[J]. Talanta,2019,199:244−253. doi: 10.1016/j.talanta.2019.02.037
    [7]
    彭发, 王震, 刘双喜, 等. 基于偏最小二乘法和深度学习的近红外糖度预测[J]. 吉林农业大学学报,2021,43(2):196−204. [PENG Fa, WANG Zhen, LIU Shuangxi, et al. Near-infrared sugar content prediction based on partial least squares and deep learning[J]. Journal of Jilin Agricultural University,2021,43(2):196−204. doi: 10.13327/j.jjlau.2021.6116
    [8]
    张娟, 原帅, 张骏. 基于小波变换-遗传算法-偏最小二乘的草莓糖度检测研究[J]. 分析科学学报,2020,36(1):111−115. [ZHANG Juan, YUAN Shuai, ZHANG Jun. Research on brix detection of strawberry based on wavelet transform-genetic algorithm-partial least square[J]. Journal of Analytical Science,2020,36(1):111−115.
    [9]
    ALI M T, ABBAS A, NILOOFAR L N. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR)[J]. Journal of Integrative Agriculture,2017,16(7):1634−1644. doi: 10.1016/S2095-3119(16)61546-0
    [10]
    刘小路, 薛璐, 鲁晓翔, 等. 近红外光谱技术快速无损检测蓝莓总黄酮、花青素的研究[J]. 食品工业科技,2015,36(16):58−61, 67. [LIU Xiaolu, XUE Lu, LU Xiaoxiang, et al. Research on rapid non-destructive detection of total flavonoids and anthocyanins in blueberry by near-infrared spectroscopy[J]. Science and Technology of Food Industry,2015,36(16):58−61, 67.
    [11]
    ZHENG W, BAI Y H, LUO H, et al. Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics[J]. Postharvest Biology and Technology,2020,169:111286. doi: 10.1016/j.postharvbio.2020.111286
    [12]
    薛璐, 刘小路, 鲁晓翔, 等. 近红外漫反射无损检测蓝莓硬度的研究[J]. 浙江农业学报,2015,27(9):1646−1651. [XUE Lu, LIU Xiaolu, LU Xiaoxiang, et al. Non-destructive testing of blueberry firmness by near-infrared diffuse reflectance[J]. Acta Agriculture Zhejiangensis,2015,27(9):1646−1651. doi: 10.3969/j.issn.1004-1524.2015.09.25
    [13]
    张丽娟, 夏其乐, 陈剑兵, 等. 近红外光谱的三种蓝莓果渣花色苷含量测定[J]. 光谱学与光谱分析,2020,40(7):2246−2252. [ZHANG Lijuan, XIA Qile, CHEN Jianbing, et al. Determination of anthocyanins in three kinds of blueberry pomace by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(7):2246−2252.
    [14]
    ANDREAS K, FRANCESC X, PRENAFETA-BOLDU. Deep learning in agriculture: A survey[J]. Computers and Electronics in Agriculture,2018,147:70−90. doi: 10.1016/j.compag.2018.02.016
    [15]
    王璨, 武新慧, 李恋卿, 等. 卷积神经网络用于近红外光谱预测土壤含水率[J]. 光谱学与光谱分析,2018,38(1):36−41. [WANG Can, WU Xinhui, Li Lianqin, et al. Convolutional neural networks for predicting soil moisture content by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2018,38(1):36−41.
    [16]
    LIU J, ZHANG J X, TAN Z L, et al. Detecting the content of the bright blue pigment in cream based on deep learning and near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2022,270:120757. doi: 10.1016/j.saa.2021.120757
    [17]
    DONG X, QUOCHUY V, BATUAN L. Salt content in saline-alkali soil detection using visible-near infrared spectroscopy and a 2D deep learning[J]. Microchemical Journal,2021,165:106182. doi: 10.1016/j.microc.2021.106182
    [18]
    孙志兴, 赵忠盖, 刘飞. 堆叠监督自动编码器的近红外光谱建模[J]. 光谱学与光谱分析,2022,42(3):749−756. [SUN Zhixing, ZHAO Zhonggai, LIU Fei. Near-infrared spectral modeling of stacked supervised autoencoders[J]. Spectroscopy and Spectral Analysis,2022,42(3):749−756. doi: 10.3964/j.issn.1000-0593(2022)03-0749-08
    [19]
    LI L, ANDREW P, MARTHA W. Supervised autoencoders: Improving generalization performance with unsupervised regularizers[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18), Red Hook, NY, USA: Curran Associates Inc. 2018: 107–117.
    [20]
    赵尔丰, 高畅, 高欣, 等. 酶-超声波辅助提取蓝莓果渣中花青素的工艺研究[J]. 东北农业大学学报,2010,41(4):98−103. [ZHAO Erfeng, GAO Chang, GAO Xin, et al. Study on the technology of enzyme-ultrasonic-assisted extraction of anthocyanins from blueberry pomace[J]. Journal of Northeast Agricultural University,2010,41(4):98−103. doi: 10.3969/j.issn.1005-9369.2010.04.021
    [21]
    刘仁道, 张猛, 李新贤. 草莓和蓝莓果实花青素提取及定量方法的比较[J]. 园艺学报,2008(5):655−660. [LIU Rendao, ZHANG Meng, LI Xinxian. Comparison of extraction and quantitative methods of anthocyanins from strawberry and blueberry fruits[J]. Acta Horticulturae Sinica,2008(5):655−660. doi: 10.16420/j.issn.0513-353x.2008.05.013
    [22]
    第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800−2806. [DI Wupengyao, BIAN Xihui, WANG Zifang, et al. Study on the selection of spectral preprocessing method[J]. Spectroscopy and Spectral Analysis,2019,39(9):2800−2806.
    [23]
    张建勇, 高冉, 胡骏, 等. 灰色关联度和Pearson相关系数的应用比较[J]. 赤峰学院学报(自然科学版),2014,30(21):1−2. [ZHANG Jianyong, GAO Ran, HU Jun, et al. Application comparison of grey correlation degree and Pearson correlation coefficient[J]. Journal of Chifeng University (Natural Science Edition),2014,30(21):1−2. doi: 10.3969/j.issn.1673-260X.2014.21.001
    [24]
    罗一甲, 祝赫, 李潇涵, 等. 赤霞珠酿酒葡萄总酚含量的近红外光谱定量分析[J]. 光谱学与光谱分析,2021,41(7):2036−2042. [LUO Yijia, ZHU He, LI Xiaohan, et al. Quantitative analysis of total phenolic content in Cabernet Sauvignon wine grapes by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(7):2036−2042.
    [25]
    LIN C, CHEN X, JIAN L, et al. Determination of grain protein content by near-infrared spectrometry and multivariate calibration in barley[J]. Food Chemistry,2014,162:10−15. doi: 10.1016/j.foodchem.2014.04.056
  • Related Articles

    [1]MU Yang, SUN An. Research Progress of Data Fusion Technology in Nondestructive Testing of Fruit Quality[J]. Science and Technology of Food Industry, 2024, 45(22): 1-8. DOI: 10.13386/j.issn1002-0306.2023100141
    [2]YANG Hongxin, TANG Xingping, YANG Zhengming, ZHANG Ju, LU Yajuan, WU Wendou. Application Research and Prospects of Multispectral Technology in Non-destructive Testing of Food[J]. Science and Technology of Food Industry, 2024, 45(8): 350-357. DOI: 10.13386/j.issn1002-0306.2023040152
    [3]DING Yan, SUN Yuanming, LI Dongsheng, LI Tongxi, ZHANG Yongcheng, LIU Yang, LAN Haipeng. Visualized Analysis of Research Progress and Trends in Fruit Nondestructive Testing Based on CiteSpace[J]. Science and Technology of Food Industry, 2023, 44(16): 444-453. DOI: 10.13386/j.issn1002-0306.2022100233
    [4]ZHANG Haifang, NA Ri, HAN Yumei, SU Xiaoyan. Research Progress of Spectral Nondestructive Testing Technology in Traceability of Agricultural Products[J]. Science and Technology of Food Industry, 2023, 44(8): 17-25. DOI: 10.13386/j.issn1002-0306.2022080091
    [5]HU Yilei, JIANG Hongzhe, ZHOU Hongping, WANG Ying. Research Progress on Nondestructive Detection of Fruit Maturity by Near Infrared Spectroscopy and Hyperspectral Imaging[J]. Science and Technology of Food Industry, 2021, 42(20): 377-383. DOI: 10.13386/j.issn1002-0306.2020070074
    [6]SHANG Jing, MENG Qing-long, ZHANG Yan, MU Xing-yan. Nondestructive Detection of Soluble Solids Content of Plums Based on UV/Vis Spectroscopy Technology[J]. Science and Technology of Food Industry, 2020, 41(3): 228-231. DOI: 10.13386/j.issn1002-0306.2020.03.038
    [7]WANG Di, ZHANG Jing-pu, ZHANG Jue, ZHANG Jing, LI Hai-jun, TIAN Hai-qing. Nondestructive detection of mutton moisture content based on hyperspectral technique[J]. Science and Technology of Food Industry, 2018, 39(4): 215-218.
    [8]LIU Jian- xue, YANG Ying, HAN Si- hai, LI Xuan, LI Pei- yan, ZHANG Wei- wei, ZHANG Tian- ze, YANG Guo- di, JIAO Xiao- fei. Application of hyperspectral imaging technology in nondestructive detection of food quality[J]. Science and Technology of Food Industry, 2016, (03): 389-393. DOI: 10.13386/j.issn1002-0306.2016.03.073
    [9]LIU Xiao-lu, XUE Lu, LU Xiao-xiang, ZHANG Peng, CHEN Shao-hui, LI Jiang-kuo. Fast non-destructive testing of total flavonoids and anthocyanins in blueberries by near-infrared spectroscope[J]. Science and Technology of Food Industry, 2015, (16): 58-61. DOI: 10.13386/j.issn1002-0306.2015.16.003
    [10]ZHANG Peng, LI Jiang-kuo, CHEN Shao-hui. Study on nondestructive measurement model of apple fruit texture by near infrared spectroscopy[J]. Science and Technology of Food Industry, 2015, (04): 79-83. DOI: 10.13386/j.issn1002-0306.2015.04.008
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (121) PDF downloads (10) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return