Citation: | HAN Lucong, JIN Tingxiang, ZHANG Zhenya, et al. Drying Characteristics and Shrinkage Model Analysis of Pitaya Heat Pump Drying[J]. Science and Technology of Food Industry, 2023, 44(10): 242−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070147. |
[1] |
王旭旭, 马领领, 马卓云, 等. 火龙果的功能及其作用机制研究进展[J]. 食品工业科技,2019,40(21):352−360. [WANG X X, MA L L, MA Z Y, et al. Research progress on the function of pitaya and its mechanism[J]. Science and Technology of Food Industry,2019,40(21):352−360.
|
[2] |
DONG R, LIU S, XIE J, et al. The recovery, catabolism and potential bioactivity of polyphenols from pitaya subjected to in vitro simulated digestion and colonic fermentation[J]. Food Research International,2021,143:110263. doi: 10.1016/j.foodres.2021.110263
|
[3] |
董文丽, 巩雪, 侯理达, 等. 壳聚糖/柠檬酸复合涂膜对火龙果的保鲜效果[J]. 包装工程,2021,42(9):72−78. [DONG W L, GONG X, HOU L D, et al. Effects of chitosan and citric acid composite film on preservation of pitaya[J]. Packaging Engineering,2021,42(9):72−78.
|
[4] |
马国军, 刘英, 李武强, 等. 基于响应面法优化火龙果切片远红外干燥工艺[J]. 中国农机化学报,2019,40(12):106−112. [MA G J, LIU Y, LI W Q, et al. Optimization of pitaya slice deep infrared drying process based on response surface methodology[J]. Journal of Chinese Agricultural Mechanization,2019,40(12):106−112.
|
[5] |
HOU H, CHEN Q, BI J F, et al. Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition[J]. Journal of Food Engineering,2019,272(3):109874.
|
[6] |
MAYOR L, SERENO A M. Modelling shrinkage during convective drying of food materials: A review[J]. Journal of Food Engineering,2004,61(3):373−386. doi: 10.1016/S0260-8774(03)00144-4
|
[7] |
刘鹤, 焦俊华, 田友, 等. 马铃薯片热风干燥特性及收缩动力学模型[J]. 食品工业科技,2022,43(11):58−64. [LIU H, JIAO J H, TIAN Y, et al. Study on hot-air drying characteristics and shrinkage dynamics model of potato chips[J]. Science and Technology of Food Industry,2022,43(11):58−64.
|
[8] |
陈良元, 韩李锋, 李旭, 等. 茄子片热风干燥收缩特性及其修正的湿分扩散动力学模型[J]. 农业工程学报,2016,32(15):275−281. [[ CHEN L Y, HAN L F, LI X, et al. Structural shrinkage characteristics and modified moisture diffusion kinetics model of sliced eggplant dried by hot air[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(15):275−281. doi: 10.11975/j.issn.1002-6819.2016.15.038
|
[9] |
DHALSAMANT K, TRIPATHY P P, SHRIVASTAVA S L. Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation[J]. Food and Bioproducts Processing,2018,109:107−121. doi: 10.1016/j.fbp.2018.03.005
|
[10] |
BURMESTER K, EGGERS R. Heat and mass transfer during the coffee drying process[J]. Journal of Food Engineering,2010,99(4):430−436. doi: 10.1016/j.jfoodeng.2009.12.021
|
[11] |
SANDOVAL T S, SOLEDAD T A, HERNANDEZ B E. Dimensionless modeling for convective drying of tuberous crop (Solanum tuberosum) by considering shrinkage[J]. Journal of Food Engineering,2017,214:147−157. doi: 10.1016/j.jfoodeng.2017.06.014
|
[12] |
陈衍男, 王晓, 穆岩, 等. 天麻蒸制后红外干燥特性及失水动力学研究[J]. 食品工业科技,2018,39(22):30−34,40. [CHEN Y N, WANG X, MU Y, et al. Drying characteristics and kinetics research of Gastrodia elata blume under infrared blast drying after steaming[J]. Science and Technology of Food Industry,2018,39(22):30−34,40.
|
[13] |
ELMIZADEH A, SHAHEDI M, HAMDAMI N. Comparison of electrohydrodynamic and hot-air drying of the quince slices[J]. Innovative Food Science & Emerging Technologies,2017,43:130−135.
|
[14] |
OJEDIRAN J O, OKONKWO C E, ADEYI A J, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics[J]. Heliyon,2020,6(3):e03555. doi: 10.1016/j.heliyon.2020.e03555
|
[15] |
沈素晴, 徐亚元, 李大婧, 等. 青香蕉微波干燥特性及动力学模型研究[J]. 食品工业科技,2022,43(14):110−117. [SHEN S Q, XU Y Y, LI D J, et al. Research on microwave drying characteristics and kinetic model of green bananas[J]. Science and Technology of Food Industry,2022,43(14):110−117.
|
[16] |
LI X, LIU Y, GAO Z, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control[J]. Journal of Food Engineering,2021,292:110253. doi: 10.1016/j.jfoodeng.2020.110253
|
[17] |
白竣文, 田潇瑜, 刘宇婧, 等. 大野芋薄层干燥特性及收缩动力学模型研究[J]. 中国食品学报,2018,18(4):124−131. [BAI J W, TIAN X Y, LIU Y J, et al. Studies on drying characteristics and shrinkage kinetics modelling of Colocasia gigantea slices during thin layer drying[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(4):124−131.
|
[18] |
徐庚, 马月虹, 王庆惠, 等. 芜菁干燥特性及收缩动力学模型研究[J]. 农机化研究,2021,43(10):142−149. [XU G, MA Y H, WANG Q H, et al. Study on physical and dynamical character of the hydroponic butter lettuce[J]. Journal of Agricultural Mechanization Research,2021,43(10):142−149.
|
[19] |
SEERANGURAYAR T, AL-ISMAILI A M, JEEWANTHA L H J, et al. Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods[J]. Solar Energy,2019,180(Mar.):445−455.
|
[20] |
NANVAKENARIA S, MOVAGHARNEJAD K, LATIFI A. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer[J]. Food Research International,2022,159:111617. doi: 10.1016/j.foodres.2022.111617
|
[21] |
DEHGHANNYA J, KADKHODAEI S, HESHMATI M K, et al. Ultrasound-assisted intensification of a hybrid intermittent microwave hot-air drying process of potato: Quality aspects and energy consumption[J]. Ultrasonics,2019,96:104−122. doi: 10.1016/j.ultras.2019.02.005
|
[22] |
RAMIREZ C, ASTORGA V, NUNEZ H, et al. Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: The effects of relative humidity and temperature[J]. Journal of Food Process Engineering,2017,40(5):e12549. doi: 10.1111/jfpe.12549
|
[23] |
王迪芬, 苑亚, 魏娟, 等. 苹果热风干燥工艺优化和特性分析[J]. 食品工业科技,2021,42(1):144−148,155. [WANG D F, YUAN Y, WEI J, et al. Optimization and characteristic analysis of apple hot-air drying process[J]. Science and Technology of Food Industry,2021,42(1):144−148,155.
|
[24] |
DHURVE P, ARORA V K, YADAV D K, et al. Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer[J]. Mater Today Proceedings,2022,59:926−932. doi: 10.1016/j.matpr.2022.02.008
|
[25] |
MALAKAR S, ARORA V K. Mathematical modeling of drying kinetics of garlic clove in forced convection evacuated tube solar dryer[J]. Advances in Fluid and Thermal Engineering,2021:813−820.
|
[26] |
兰大为, 赵芳, 王玉清, 等. 热风干燥条件对干燥特性影响及数学模型研究[J]. 内蒙古石油化工,2022,48(4):54−58. [LAN D W, ZHAO F, WANG Y Q, et al. Effect of hot-air drying conditions on drying characteristics and mathematical model[J]. Inner Mongolia Petrochemical Industry,2022,48(4):54−58.
|
[27] |
MUTHUKUMAR P, LAKSHMI D, KOCH P, et al. Effect of drying air temperature on the drying characteristics and quality aspects of black ginger[J]. Journal of Stored Products Research,2022,97:101966. doi: 10.1016/j.jspr.2022.101966
|
[28] |
王航. 香蕉片高压电场-热泵联合干燥特性研究[D]. 郑州: 中原工学院, 2021.
WANG H. Study on drying characteristics of banana slices with high pressure electric field and heat pump[D]. Zhengzhou: Zhongyuan University of Technology, 2021.
|
[29] |
黄光群, 余浩, 方晨, 等. 奶牛粪固形物热风干燥特性及工艺参数优化[J]. 农业工程学报,2021,37(23):186−193. [HUANG G Q, YU H, FANG C, et al. Hot-air drying characteristics and optimization of the process parameters for the solid fraction of dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(23):186−193.
|
[30] |
汤尚文, 马雪伟, 于博, 等. 马铃薯红外干燥特性研究[J]. 保鲜与加工,2018,18(1):76−81,89. [TANG S W, MA X W, YU B, et al. Infrared radiation drying characteristics of potato[J]. Storage and Process,2018,18(1):76−81,89. doi: 10.3969/j.issn.1009-6221.2018.01.013
|
[1] | XUE Jiaqi, WANG Ying, ZHOU Hui, HUANG Junyi, XU Baocai. Research Progress of Packaging Technology in the Preservation of Meat Products[J]. Science and Technology of Food Industry, 2021, 42(16): 367-373. DOI: 10.13386/j.issn1002-0306.2020080047 |
[2] | CAI Yan-ping, ZHANG Sha-sha, LIU Jian-hua, DING Yu-ting, LIU Shu-lai. Preservation Effects of CO2-cold Seawater Combined with Antioxidants on Litopenaeus vannamei[J]. Science and Technology of Food Industry, 2019, 40(15): 271-275,297. DOI: 10.13386/j.issn1002-0306.2019.15.045 |
[3] | YI Shu-min, ZHANG Shi-wen, YE Bei-bei, YANG Ling, LI Xue-peng, YU Xiao-jun, DING Hao-chen, HUANG Jian-lian, XIE Jing, LI Jian-rong. Effect of Composite Biological Preservative on the Quality of Nemipterus virgatus Sausages[J]. Science and Technology of Food Industry, 2019, 40(4): 226-231. DOI: 10.13386/j.issn1002-0306.2019.04.037 |
[4] | ZHAO Hai-yang, GAO Li-qiong, CUI Wen-li, WANG Zhi-neng, ZHENG Quan-hui, WU Guang-xu. Quality Changes of Monopterus albus Slices during Refrigerated Preservation[J]. Science and Technology of Food Industry, 2018, 39(21): 293-298. DOI: 10.13386/j.issn1002-0306.2018.21.052 |
[5] | SU Hong, SHEN Liang, BI Shi-jie, ZHANG Xiao-mei, GUO Rui, LIU Hong-ying. Preservation Effect of Complex Biological Preservatives on Takifugu rubripes during Cold Storage[J]. Science and Technology of Food Industry, 2018, 39(15): 298-301,321. DOI: 10.13386/j.issn1002-0306.2018.15.052 |
[6] | ZHANG Li, ZHANG Juan, WANG Qian, MA Ling-yan, DING Wu. Application of eugenol nanoparticles on preservation of chilled pork[J]. Science and Technology of Food Industry, 2017, (22): 280-285. DOI: 10.13386/j.issn1002-0306.2017.22.054 |
[7] | LAN Rong, WU Zhi-ming, ZHANG Li-qiu. Effect of glucose oxidase on the preservation of raspberries[J]. Science and Technology of Food Industry, 2014, (22): 308-312. DOI: 10.13386/j.issn1002-0306.2014.22.059 |
[8] | LU Yu-xi, SHEN Ping, LI Xue-ying, YANG Xian-shi, CHI Hai. Influence of preservative on squid quality changes during frozen[J]. Science and Technology of Food Industry, 2014, (19): 274-279. DOI: 10.13386/j.issn1002-0306.2014.19.050 |
[9] | LIU Xiao, XIE Jing. Effect of biopreservation combined with modified atmosphere packaging on qualities of chilled pork[J]. Science and Technology of Food Industry, 2014, (12): 344-348. DOI: 10.13386/j.issn1002-0306.2014.12.067 |
[10] | YU Gang, ZHANG Hong-jie, YANG Shao-ling, CEN Jian-wei, HAO Shu-xian, YANG Xian-qing. Research progress in preservation methods for tuna and its quality changes during storage[J]. Science and Technology of Food Industry, 2013, (21): 381-384. DOI: 10.13386/j.issn1002-0306.2013.21.035 |
1. |
蒋云聪,张玉涵,魏占姣,齐立军,武亚明. 分子蒸馏精制胡椒精油工艺优化及其成分分析. 中国食品添加剂. 2024(01): 266-271 .
![]() | |
2. |
周宇,提靖靓,袁梦,翟成凯,章海风,李春梅,王芸. 三个地区马铃薯烘烤后食用品质评价分析. 美食研究. 2024(01): 86-94 .
![]() | |
3. |
张琳,胡娅洁,康海龙,李慧,刘庆爽,喻东威,于敏,逯刚. 基于超快速电子鼻对生乳快速鉴别及应用. 中国食品添加剂. 2024(08): 208-216 .
![]() | |
4. |
崔春,梁佳欣,袁梦,高明奇,陈芝飞,张弛,杨雯静,邢雨晴,黄家乐,许春平. 不同干燥方式对甘薯固体香料挥发性/半挥发性成分和表面结构的影响. 食品工业科技. 2023(10): 27-35 .
![]() | |
5. |
杨红玉,张颖,吴梦茜,朱慧,李洪梅,黄璐琦,田慧,袁媛. 米蒸地黄辅料米的优选及其抗骨质疏松作用研究. 中国中药杂志. 2023(10): 2749-2756 .
![]() | |
6. |
庄志雄,张雁,邓媛元,唐小俊,刘光,李萍,李雁. 烫漂及喷雾干燥对甜玉米挥发性风味化合物的影响. 食品科学. 2023(14): 274-282 .
![]() | |
7. |
韩艳秋,叶春苗,李莉峰. 乳酸菌发酵对薯干质构和风味的影响. 食品研究与开发. 2023(15): 50-54 .
![]() | |
8. |
尤俊昊,张保,荀航,姚曦,王进,汤锋. 毛竹竹秆加压热水提取工艺优化及化学成分分析. 林产化学与工业. 2023(04): 107-114 .
![]() | |
9. |
肖庆泉. 栽培密度与钾肥施用量对普薯32农艺性状和产量的影响. 福建农业科技. 2023(07): 67-72 .
![]() | |
10. |
肖庆泉. 秋季不同移栽期对鲜食甘薯经济性状和品质的影响. 安徽农学通报. 2023(20): 21-24 .
![]() | |
11. |
赵俊梅,王学清,韩美坤,胡亚亚,高志远,焦伟静,刘兰服,辛国胜,杨雪,马志民,牟德华. 不同类型甘薯最佳烹饪方式评价. 中国粮油学报. 2022(08): 102-110 .
![]() | |
12. |
张玉涵,蒋云聪,魏占姣,张晶晶,齐立军. 基于超快速气相电子鼻构建不同品种花椒和花椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2022(09): 226-233 .
![]() | |
13. |
洪蕴恒,宋聚红,梁丽鹏,付雅丽,王海山. 影响甘薯食用品质因素分析. 蔬菜. 2022(11): 40-43 .
![]() | |
14. |
沈升法,项超,吴列洪,季志仙. 迷你甘薯‘心香’的品质研究和育种利用进展. 分子植物育种. 2022(21): 7249-7258 .
![]() | |
15. |
赵思颖,李璐,刘小茜,赵钢军,吴海滨,罗剑宁,龚浩,郑晓明,李俊星. 基于感官品质、质构特征及理化成分分析的中国南瓜果实感官综合评价预测模型. 食品科学. 2022(23): 63-71 .
![]() | |
16. |
陈龙,史春余,孟迪,许燕,柳洪鹃. 硫酸钾对甘薯块根烤后口感品质的影响. 中国粮油学报. 2021(07): 40-46 .
![]() | |
17. |
张玉涵,李腾飞,魏占姣,齐立军,高伟. 基于超快速气相电子鼻构建不同产地胡椒及胡椒提取物指纹图谱库及应用研究. 中国食品添加剂. 2021(09): 97-104 .
![]() | |
18. |
赵俊梅,高小宽,胡亚亚,韩美坤,马志民,牟德华. 不同品种鲜食型甘薯烘烤后品质的研究. 食品研究与开发. 2021(20): 1-7 .
![]() | |
19. |
项伟,许健,董芳,张道微,黄艳岚,张亚,张超凡. 基于模糊数学的甘薯食用品质感官评价模型. 植物遗传资源学报. 2021(06): 1624-1634 .
![]() | |
20. |
贾赵东,马佩勇,边小峰,禹阳,张铅,刘帅,谢一芝. 鲜食甘薯食用品质感官评价技术规程. 江苏农业科学. 2021(23): 185-189 .
![]() |