Citation: | NA Zhiguo, YU Shuang, HE Shuzhen, et al. Auxiliary Hypoglycemic Effect of Low-GI Multigrain Cocoa Powder[J]. Science and Technology of Food Industry, 2023, 44(1): 28−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070134. |
[1] |
黄瑞, 刘敦华. 荞麦降糖酸奶的研制[J]. 粮油食品科技,2020,28(3):129−134. [HUANG R, LIU D H. Development of buckwheat hypoglycemic yogurt[J]. Science and Technology of Cereals, Oils and Foods,2020,28(3):129−134.
|
[2] |
ANGELO L D. Estimated morbidity and mortality in adolescents and young adults diagnosed with type 2 diabetes mellitus[J]. Diabetic Medicine,2012,29(4):453−463. doi: 10.1111/j.1464-5491.2011.03542.x
|
[3] |
SUGIHARA S. Pathophysiology, diagnosis and treatment of type 2 dia-betes mellitus in children and adolescent[J]. Nippon Rinsho Japanese Journal of Clinical Medicine,2012,70(5):31−37.
|
[4] |
张继红, 马存根, 祝寿芬. 雀麦膳食纤维对2型糖尿病模型大鼠血糖、血脂影响的研究[J]. 山西大同大学学报(自然科学版),2008(3):64−67. [ZHANG J H, MA C G, ZHU S F. Effects of dietary fiber in oat bran on blood glucose and blood lipid in experimental type-2 diabetes mellitus rats[J]. Journal of Shanxi Datong University (Natural Science Edition),2008(3):64−67.
|
[5] |
HASHEMI Z, FOUHSE J, IM H S, et al. Dietary pea fiber supplemen-tation improves glycemia and induces changes in the composition of gut microbiota, serum short chain fatty acid profile and expression of mucins in glucose intolerant rats[J]. Nutrients,2017,9(11):1236. doi: 10.3390/nu9111236
|
[6] |
李兆钊, 吴卫国, 廖卢艳, 等. 杂粮中辅助调节血糖功效成分研究进展[J]. 中国粮油学报,2020,35(7):195−202. [LI Z Z, WU W G, LIAO L Y, et al. Research progress on functional components that help regulating of blood sugar in miscellaneous grains[J]. Journal of the Chinese Cereals and Oils Association,2020,35(7):195−202.
|
[7] |
刘欣. 冲调粉的研制及其体外消化特性和抗氧化活性研究[D]. 天津: 天津农学院, 2019.
LIU X. Development of brewing powder and its digestion characteristics and antioxidant activity in vitro[D]. Tianjin: Tianjin Agricultural University, 2019.
|
[8] |
WU W, WANG L, QIU J, et al. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells[J]. Journal of Functional Foods,2018(4):137−146.
|
[9] |
LIU M, ZHANG Y, ZHANG H, et al. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide induced diabetic mice[J]. International Journal of Biological Macromolecules,2016,91:1170−1176. doi: 10.1016/j.ijbiomac.2016.06.083
|
[10] |
QIU J, L IU Y, YUE Y, et al. Dietary tartary buckwheat intake attenuates insulin resistance and improves lipidprofiles in patient s with type 2 diabetes: A randomized controlled trial[J]. Nutrition Research,2016,36(12):1392−1401. doi: 10.1016/j.nutres.2016.11.007
|
[11] |
薛士科, 冯利. 红芸豆α-淀粉酶抑制剂和中草药组合饲料的应用价值[J]. 中国饲料,2020(24):52−54. [XUE S K, FENG L. The application value of red kidney bean α-amylase inhibitor and Chinese herbal medicine in the feed industry[J]. China Feed,2020(24):52−54.
|
[12] |
章志, 熊艳. 白芸豆复方制剂对高血糖模型小鼠血糖的影响[J]. 实用中西医结合临床,2013,13(4):83−85. [ZHANG Z, XIONG Y. Effect of white kidney bean compound preparation on blood glucose in hyperglycemia model mice[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine,2013,13(4):83−85.
|
[13] |
黄修晴, 初众, 房一明, 等. 植物多酚降血糖机制的研究进展[J]. 食品工业科技: 2021, 42(18): 461-469.
HUANG X Q, CHU Z, FANG Y M, et al. Research progress on hypoglycemic mechanism of plant polyphenols[J]. Science and Technology of Food Industry: 2021, 42(18): 461-469.
|
[14] |
AONO Y, KAIDOT, KITA N, et al. Dose-dependent effects of cacao polyphenol intake on lipid metabolism in rats[J]. Plant Foods for Human Nutrition,2021(8):254−255.
|
[15] |
MALKI A A. Oat attenuation of hyperglycemia-induced retinal oxidative stress and nf-kappa b activation in streptozotocin-induced diabetic rats[J]. Evid Based Complement Alternat Med,2013(1):983923−983930.
|
[16] |
生庆海, 赵伟, 贾艳菊, 等. 复合营养粉对2型糖尿病大鼠的辅助降血糖试验[J]. 食品与机械,2020,36(12):147−151. [SHENG Q H, ZHAO W, JIA Y J, et al. Effects of compound nutrition powder on hypoglycemia in type 2 diabetic rats[J]. Food & Machinery,2020,36(12):147−151.
|
[17] |
JI J, ZHANG C, LUO X, et al. Effect of stay-green wheat, a novel variety of wheat in China, on glucose and lipid metabolism in high-fat diet induced type 2 diabetic rats[J]. Multidisciplinary Digital Publishing Institute (MDPI),2015(7):5143−5155.
|
[18] |
唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报,2020,28(6):870−876. [TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type II diabetes animal models[J]. Acta Laboratorium Animalis Scientia Sinica,2020,28(6):870−876.
|
[19] |
祁瑜婷. 高粱淀粉制备及其功效评价研究[D]. 济南: 山东大学, 2018.
QI Y T. Preparation and efficacy evaluation of sorghum starch[D]. Jinan: Shandong University, 2018.
|
[20] |
郑晓丽, 阎利萍, 左吉卉, 等. 羊栖菜提取物的体外抗氧化活性及降低小鼠餐后血糖作用[J]. 现代食品科技,2020,36(6):33−39. [ZHENG X L, YAN L P, ZUO J H, et al. In vitro antioxidant activity and reduction of postprandial blood glucose by the extracts from Sargassum fusiforme[J]. Modern Food Science and Technology,2020,36(6):33−39.
|
[21] |
何晓琴. 蒸汽爆破对苦荞麸皮膳食纤维理化特性及降血糖活性的影响[D]. 重庆: 西南大学, 2020.
HE X Q. Effect of steam explosion on the physicochemical properties and hypoglycemic activity of Tartary buckwheat bran dietary fiber[D]. Southwest University, 2020.
|
[22] |
廖作庄, 徐灵源, 王金妮, 等. 肉桂多酚对链脲佐菌素致糖尿病小鼠的保护作用[J]. 西安交通大学学报(医学版),2019,40(1):162−166. [LIAO Z Z, XU L Y, WANG J N. Protective effect of cinnamon polyphenols on streptozotocin induced diabetic mice[J]. Journal of Xi'an Jiaotong University (Medical Sciences),2019,40(1):162−166.
|
[23] |
刘欣然, 康家伟, 王天星, 等. 菠萝蜜低聚肽对db/db小鼠炎症反应、血糖及血脂的影响[J]. 中国食物与营养,2020,26(4):61−65. [LIU X R, KANG J W, WANG T X, et al. Effects of jackfruit oligopeptides on inflammation, glucose and lipid in db/db diabetic mice[J]. Food and Nutrition in China,2020,26(4):61−65.
|
[24] |
郭城, 冯元, 廖新茹, 等. 改性小麦麸膳食纤维对糖尿病小鼠的影响[J]. 安徽农业科学,2020,48(7):182−185. [GUO C, FENG Y, LIAO X R, et al. Effect of modified wheat bran dietary fiber on diabetic mice[J]. Journal of Anhui Agricultural Sciences,2020,48(7):182−185.
|
[25] |
GAO R, WANG Y, WU Z, et al. Interaction of barley β-glucan and tea polyphenols on glucose metabolism in streptozotocin-induced diabetic rats[J]. Journal of Food Science,2012,77(6):H128−H134. doi: 10.1111/j.1750-3841.2012.02688.x
|
[26] |
王德萍, 安馨, 鱼晓敏, 等. 鹰嘴豆醇提物降血糖作用研究[J]. 食品研究与开发,2019,40(13):21−25. [WANG D P, AN X, YU X M, et al. Hypoglycemic effect of chickpea ethanol extracts on diabetic mice[J]. Food Research and Development,2019,40(13):21−25.
|
[27] |
高远, 杨鲁, 袁诗涵, 等. 虾青素酯对高脂高糖饮食致小鼠胰岛素抵抗的影响[J]. 食品工业科技,2019,40(23):290−295. [GAO Y, YANG L, YUAN S H, et al. Effects of astaxanthin ester on insulin resistance in mice induced by high fat and high sugar diet[J]. Science and Technology of Food Industry,2019,40(23):290−295.
|
[28] |
QI W, WANG Y, SONG G, et al. Effects of four coarse cereals on blood glucose levels in rats with STZ-induced hyperglycemia[J]. Food & Agricultural Immunology,2019,30(1):487−496.
|
[29] |
刘亚萍, 高文鸽, 梁隽杰, 等. 菊粉复配灵芝多糖对2型糖尿病大鼠的降血糖作用[J]. 食品工业科技,2019,40(20):310−315, 324. [LIU Y P, GAO W G, LIANG J J, et al. Hypoglycemic Effect of inulin combined with ganoderma lucidum polysaccharides on type 2 diabetes mellitus rats[J]. Science and Technology of Food Industry,2019,40(20):310−315, 324.
|
[30] |
王语聪, 谢智鑫, 张学艳, 等. 阿拉伯半乳聚糖对2型糖尿病大鼠肠道碱性磷酸酶、细菌内毒素和肠道中细胞因子的影响[J]. 食品工业科技,2021,42(14):334−340. [WANG Y C, XIE Z X, ZHANG X Y, et al. Effect of arabinogalactan on intestinal alkaline phosphatase, bacterial endotoxin and serum cytokines in type 2 diabetic rats[J]. Science and Technology of Food Industry,2021,42(14):334−340.
|
[31] |
PEREZ-RAMIREZ I F, BECERRIL-OCAMPO L J, REYNOSO-CAMACHO R, et al. Cookies elaborated with oat and common bean flours improvedserum markers in diabetic rats[J]. J Sci Food Agric,2018,98(3):998−1007. doi: 10.1002/jsfa.8548
|
[32] |
尹雪倩, 张晓玄, 文婧, 等. 荞麦、燕麦、豌豆复配对糖尿病大鼠血糖的影响[J]. 北京大学学报(医学版),2021,53(3):447−452. [YIN X Q, ZHANG X X, WEN J, et al. Effects of the composite of buckwheat-oat-pea on blood glucose in diabetic rats[J]. Journal of Peking University (Health Sciences),2021,53(3):447−452.
|
[33] |
傅樱花, 张富春, 彭永玉. 鹰嘴豆制品对糖尿病小鼠降血糖作用的研究[J]. 食品研究与开发,2016,37(4):26−28. [FU Y H, ZHANG F C, PENG Y Y. Hypoglycemic effects of chickpea products on diabetic mice[J]. Food Research and Development,2016,37(4):26−28.
|
[1] | Longlong LUO, Weihe REN, Linhai CAI, Siru LIU, Ulamubek·duiSheikhdale, Alimat Sharizah, Gongtao DING, Li SONG, Li LUO, Shien CHEN. Research Progress on the Mechanism of Lactic Acid Bacteria in Improving Diabetes Metabolism[J]. Science and Technology of Food Industry, 2021, 42(8): 404-409. DOI: 10.13386/j.issn1002-0306.2020070270 |
[2] | Qisen XIANG, Rong ZHANG, Guihong DU, Limin WANG, Aimin JIANG. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138-143. DOI: 10.13386/j.issn1002-0306.2020080241 |
[3] | LI Ke, YU Lan-xiu, LIU Xiao-yu, LIU Dong, ZHANG Wei-guang. Research Progress on Improving Sleep Mechanism of γ-aminobutyric Acid[J]. Science and Technology of Food Industry, 2019, 40(14): 353-358. DOI: 10.13386/j.issn1002-0306.2019.14.058 |
[4] | LU Jing-jing, WANG Na-na, JIAO Wen-shu, HUO Gui-cheng. The Mechanism and Research Progress of Probiotics in Relieving Obesity[J]. Science and Technology of Food Industry, 2019, 40(3): 296-299,306. DOI: 10.13386/j.issn1002-0306.2019.03.047 |
[5] | WANG Hui, ZHAO Jiang, YANG Sheng-nan, ZHANG Xiao-han, CHENG Jing, WANG Hao. Anti-aging Effects and Underling Mechanism of D-chiro-inosiol on Glucose-Induced Oxidative Damage in Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2019, 40(2): 282-286. DOI: 10.13386/j.issn1002-0306.2019.02.049 |
[6] | ZHOU Ting-ting, CAO Shao-qian, LI Si-si, QI Xiang-yang. Advances in oxidation deterioration mechanisms of oils and fats under non-thermal treatment[J]. Science and Technology of Food Industry, 2017, (10): 385-388. DOI: 10.13386/j.issn1002-0306.2017.10.066 |
[7] | ZHANG Hong, ZHOU Ying-yu, LU Wei-hong, CHEN Cui-lin, GAO Xin, SHAN Shan. Overview on anti-tumor mechanism and effect of diosmin[J]. Science and Technology of Food Industry, 2016, (24): 376-379. DOI: 10.13386/j.issn1002-0306.2016.24.065 |