SU Jingcheng, ZHANG Chuandan, FAN Fangyu. Sulfation Modification and Properties Analysis of Soluble Dietary Fiber from Rosa sterilis Pomace[J]. Science and Technology of Food Industry, 2023, 44(3): 255−261. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070092.
Citation: SU Jingcheng, ZHANG Chuandan, FAN Fangyu. Sulfation Modification and Properties Analysis of Soluble Dietary Fiber from Rosa sterilis Pomace[J]. Science and Technology of Food Industry, 2023, 44(3): 255−261. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070092.

Sulfation Modification and Properties Analysis of Soluble Dietary Fiber from Rosa sterilis Pomace

More Information
  • Received Date: July 11, 2022
  • Available Online: December 02, 2022
  • In this paper, the Rosa sterilis soluble dietary fiber (RSDF) was used as raw material. The degree of substitution was used as the evaluation index, the RSDF was modified by sulfate esterification (Sulfamic acid-N,N-dimethylformamide method) and prepared sulfated soluble dietary fiber (SSDF). The influence of RSDF and N,N-dimethylformamide solid-liquid ratio (g/mL), RSDF and sulfamic acid ratio (g/g), reaction time (min) and reaction temperature (℃) on the degree of substitution were investigated, and three levels of the four single factors were selected for orthogonal test to obtain the best esterification process. Finally, the difference between RSDF and SSDF was analyzed by infrared spectroscopy and differential scanning calorimetry. The results showed that the optimal conditions were solid-liquid ratio of 1:80 g/mL, sulfamic acid ratio of 1:4 g/g, reaction time of 195 min and reaction temperature of 80 ℃. Under these conditions, the substitution degree of SSDF was 1.84±0.19. Infrared spectrum showed that the characteristic peak of SSDF at 1254 cm−1 and 893 cm−1 appeared after the sulfated modification, indicated that the sulfated was successful. Differential scanning calorimetry analysis showed that the melting temperature of SSDF was 140 ℃ and its thermal stability was slightly lower than RSDF.
  • [1]
    郑元, 吴月圆, 辛培尧, 等. 环境因子对无籽刺梨光合生理日变化进程的影响研究[J]. 西部林业科学,2013,42(3):21−27. [ZHENG Y, WU Y Y, XIN P Y, et al. Relationship between photosynthetic physiology diurnal dynamics of Rosa sterilis and environmental factors[J]. Journal of West China Forestry Science,2013,42(3):21−27. doi: 10.3969/j.issn.1672-8246.2013.03.005
    [2]
    李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技,2021,46(4):194−201. [LI H, FAN F Y, QI J H, et al. Ultrasonic assisted enzymatic extraction of dietary fiber from Rosa sterilis pomace and its physicochemical properties[J]. Food Science and Technology,2021,46(4):194−201. doi: 10.13684/j.cnki.spkj.2021.04.030
    [3]
    YANG Q Q, ZHANG D, FARHA A K, et al. Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit Cili (Rosa roxburghii)[J]. Industrial Crops and Products,2020,143:111928. doi: 10.1016/j.indcrop.2019.111928
    [4]
    YANG H, HU J W, HUANG X F, et al. Risk assessment of heavy metals pollution for Rosa sterilis and soil from planting bases located in karst areas of Guizhou Province[J]. Applied Mechanics and Materials,2014,700:475−481. doi: 10.4028/www.scientific.net/AMM.700.475
    [5]
    ZHU J Z, ZHANG B, WANG B X, et al. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose[J]. Journal of Functional Foods,2019,54:13−21. doi: 10.1016/j.jff.2019.01.009
    [6]
    刘晓燕, 谢丹, 马立志, 等. 刺梨果渣发酵前后活性成分及抗氧化能力的比较研究[J]. 食品科技,2021,46(2):16−24. [LIU X Y, XIE D, MA L Z, et al. Comparative study on active components and antioxidant capacity of Rosa roxburghii Tratt. fruit residue before and after fermentation[J]. Food Science and Technology,2021,46(2):16−24. doi: 10.13684/j.cnki.spkj.2021.02.003
    [7]
    ALBA K, MAC N W, LAWS A P, et al. Fractionation and characterization of dietary fibre from blackcurrant pomace[J]. Food Hydrocolloids,2018,81:398−408. doi: 10.1016/j.foodhyd.2018.03.023
    [8]
    WANG Z J, XIE JIAN H, SHEN M Y, et al. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities[J]. Trends in Food Science & Technology,2018,74:147−157.
    [9]
    XU Y Q, GAO Y K, LIU F, et al. Sulfated modification of the polysaccharides from blackcurrant and their antioxidant and α-amylase inhibitory activities[J]. International Journal of Biological Macromolecules,2018,109:1344−1354. doi: 10.1016/j.ijbiomac.2017.11.164
    [10]
    杨波, 杨光, 陈远娇, 等. 纳豆多糖的硫酸化改性工艺[J]. 上海理工大学学报,2020,42(5):497−503. [YANG B, YANG G, CHEN Y J, et al. Sulfuration modification of natto polysaccharides[J]. University of Shanghai for Science and Technology,2020,42(5):497−503. doi: 10.13255/j.cnki.jusst.20191112001
    [11]
    张虽栓, 蔡花真. 硫酸酯化裂褶菌多糖的制备及其抗氧化活性研究[J]. 食品研究与开发,2017,38(8):17−21. [ZHANG S S, CAI H Z. Preparation and antioxidative activities of the sulfated Schizophyllan polysaccharide[J]. Food Research and Development,2017,38(8):17−21. doi: 10.3969/j.issn.1005-6521.2017.08.004
    [12]
    LIANG W A, MAO X, PENG X H, et al. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity[J]. Carbohydrate Polymers,2014,101:776−785. doi: 10.1016/j.carbpol.2013.10.010
    [13]
    CHEN L, HUNG G. Antioxidant activities of sulfated pumpkin polysaccharides[J]. International Journal of Biological Macromolecules,2019,126:743−746. doi: 10.1016/j.ijbiomac.2018.12.261
    [14]
    巩晓佩. 硫酸化修饰红枣多糖的结构表征及生物活性的研究[D]. 石河子: 石河子大学, 2021

    GONG X P. Study on the structure characterization and biological activity of sulfated modified Jujube polysaccharide[D]. Shihezi: Shihezi University, 2021.
    [15]
    沈洁, 刘昱均, 张珏. 发酵灵芝胞外多糖硫酸化修饰[J]. 食品与生物技术学报,2015,34(6):666−671. [SHEN J, LIU Y J, ZHANG J. Sulfated modification of extracellular polysaccharide from submerged fermentation of Ganoderma lucidum[J]. Journal of Food Science and Biotechnology,2015,34(6):666−671. doi: 10.3969/j.issn.1673-1689.2015.06.023
    [16]
    侯令. 硫酸酯化苹果渣水溶性多糖结构表征和生物活性研究[D]. 西安: 陕西科技大学, 2017

    HOU L. Primary structural characterization and biological activity study of sulfated apple pomace polysaccharides[D]. Xi'an: Shaanxi University of Science and Technology, 2017.
    [17]
    周本宏, 谭珺, 张婵, 等. 硫酸酯化天麻多糖的制备及其抗氧化活性[J]. 中国医院药学杂志,2017,37(17):1685−1691. [ZHOU B H, TAN J, ZHANG C, et al. Preparation of sulfated polysaccharides from Gastrodia elata Blume and its antioxidant activity[J]. Chinese Hospital Pharmacy Journal,2017,37(17):1685−1691. doi: 10.13286/j.cnki.chinhosppharmacyj.2017.17.07
    [18]
    CHEN Y, ZHANG H, WANG Y, et al. Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities[J]. Food Chemistry,2015,186:231−238. doi: 10.1016/j.foodchem.2014.10.032
    [19]
    HE L, YAN X T, LIANG J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem[J]. Carbohydrate Polymers,2018,198:101−108. doi: 10.1016/j.carbpol.2018.06.073
    [20]
    WANG J, BAO A, MENG X, et al. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro[J]. Carbohydrate Polymers,2018,184:366−375. doi: 10.1016/j.carbpol.2017.12.065
    [21]
    朱玉婷, 谭姚, 莫开菊. 硫酸酯化修饰葛仙米多糖工艺研究[J]. 食品科学,2011,32(24):46−49. [ZHU Y T, TAN Y, MO K J. Sulfation modification of polysaccharide extracted from Nostoc sphaeroides Kützing[J]. Food Science,2011,32(24):46−49.
    [22]
    刘昱均. 发酵灵芝多糖的硫酸酯化及其生物活性的研究[D]. 无锡: 江南大学, 2013

    LIU Y J. Studies of fermented Ganoderma lucidum polysaccharides modified by sulfuric acid and their biological activity[D]. Wuxi: Jiangnan University, 2013.
    [23]
    王文侠, 王龙艳, 宋春丽, 等. 豆渣多糖硫酸酯化工艺条件优化及其抗氧化活性[J]. 食品与发酵工业,2013,39(1):103−107. [WANG W X, WANG L Y, SONG C L et al. Optimization on sulfuric acid esterification process conditions of bean dregs polysaccharide and antioxidant activity[J]. Food and Fermentation Industries,2013,39(1):103−107. doi: 10.13995/j.cnki.11-1802/ts.2013.01.023
    [24]
    SI X, ZHOU Z K, BU D D, et al. Effect of sulfation on the antioxidant properties and in vitro cell proliferation characteristics of polysaccharides isolated from corn bran[J]. Cyta-Journal of Food,2016,14(4):555−564. doi: 10.1080/19476337.2016.1176074
    [25]
    YANG J H, DU Y M, WEN Y, et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers,2003,52(4):397−403. doi: 10.1016/S0144-8617(02)00330-2
    [26]
    吴海波, 于静雯, 吴长玲, 等. 空化微射流对豆渣膳食纤维结构及功能特性影响[J]. 食品科学,2020,41(1):94−99. [WU H B, YU J W, WU C L et al. Cavitation microjet effects on structural and functional properties of okara dietary fiber[J]. Food Science,2020,41(1):94−99. doi: 10.7506/spkx1002-6630-20181119-215
    [27]
    陈放. 苦瓜多糖及其衍生物的制备和抗氧化活性研究[D]. 重庆: 重庆师范大学, 2020

    CHENG F. Study on preparation and antioxidant activity of Momordica charantia polysaccharide and its derivatives[D]. Chongqing: Chongqing Normal University, 2020.
    [28]
    黄诗雨. 米糠多糖及衍生物的制备与抗氧化活性研究[D]. 重庆: 重庆师范大学, 2021

    HUANG S Y. Preparation and antioxidant activity of rice bran polysaccharide and its derivatives[D]. Chongqing: Chongqing Normal University, 2021.
    [29]
    ZHANG C, CHEN H M, BAI W Q. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice[J]. International Journal of Biological Macromolecules,2018,115:45−52. doi: 10.1016/j.ijbiomac.2018.04.039
    [30]
    王中华, 蔡同强, 杨丛远, 等. 鸡血藤多糖的硫酸化修饰、表征及活性研究[J]. 广西大学学报(自然科学版),2018,43(5):2041−2046. [WANG Z H, CAI T Q, YANG C Y et al. Sulfated modification, characterization and activities of polysaccharides from Millettia dielsiana[J]. Journal of Guangxi University (Natural Science Edition),2018,43(5):2041−2046.
  • Related Articles

    [1]SHI Qilong, LIU Jing, ZHAO Ya. Numerical Simulation of Protein Denaturation of Scallop Adductors during Heating Based on Temperature Distribution and Water Status Distribution[J]. Science and Technology of Food Industry, 2025, 46(5): 239-247. DOI: 10.13386/j.issn1002-0306.2024030367
    [2]MA Yonghui, LIU Guishan, HE Jianguo, KANG Ningbo, CHEN Shoutao, YIN Junjie, LIU Mengqi, JIA Lili. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9-17. DOI: 10.13386/j.issn1002-0306.2021110311
    [3]WANG Ya-juan, ZHANG Feng-juan, TENG Jian-wen, WEI Bao-yao, WANG Qin-zhi. Numerical Simulation of Microwave Vacuum Drying Kinetics of Carrot Chips[J]. Science and Technology of Food Industry, 2020, 41(18): 17-23. DOI: 10.13386/j.issn1002-0306.2020.18.003
    [4]ZHU Kai, LI Yan-jie, WANG Ya-bo, WANG Jin-shan. Internal Water Phase Changes and Surface Moisture Loss Kinetics of Broad Bean Seeds during Dehydration[J]. Science and Technology of Food Industry, 2020, 41(17): 51-57. DOI: 10.13386/j.issn1002-0306.2020.17.009
    [5]LI Chun-hui, ZHANG Min, AI Wen-ting, SHAO Ting-ting, LIU Wei, ZHU Sai-sai. Effects of different temperature field responses on postharvest storage quality of Cucurbita pepo L.[J]. Science and Technology of Food Industry, 2018, 39(2): 272-277,284. DOI: 10.13386/j.issn1002-0306.2018.02.051
    [6]DU Jing, LIU Tao, XU Ze, LI Chun-mei. Numberical simulation and experiment verification study on low temperature spray-drying of persimmon pulp[J]. Science and Technology of Food Industry, 2015, (21): 237-241. DOI: 10.13386/j.issn1002-0306.2015.21.041
    [7]LI Jing, JIN Guang-yuan, ZHANG Min, CUI Zheng-wei, ZHONG Jian-xun. Numerical study on spout fluidization dynamics in pulsed- spout microwave- vacuum dryer[J]. Science and Technology of Food Industry, 2015, (11): 79-83. DOI: 10.13386/j.issn1002-0306.2015.11.008
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 王宇昂,刘晓鹏,宋少云,曹梅丽,张永林. 基于多耦合物理场的“香菇-热风”互作过程分析. 武汉轻工大学学报. 2024(06): 94-102 .
    3. 张瑞,李国伟,刘扬,兰海鹏,张永成,范修文. 坚果干燥技术研究现状分析及展望. 新疆农机化. 2023(02): 34-38+48 .
    4. 肖更生,林可为,沈乔眉,刘东杰,马路凯,王锋. 岭南特色水果干燥加工技术研究进展. 轻工学报. 2023(04): 1-10 .
    5. 刘烨,陈鹏枭,朱文学,樊梦珂,吴建章,蒋萌蒙. 农产品干燥过程数值模拟研究现状及进展. 食品与发酵工业. 2023(16): 331-339 .
    6. 王雪妃,王田,许铭强,张艳艳,承春平,杜雨桐,陈恺,李焕荣. 赛买提鲜杏整果热风干燥特性及水分迁移规律研究. 食品与发酵工业. 2023(20): 91-99 .
    7. 王泽林,刘芳,耿文广,高玲,张大鹏,李子淳,张潇. 苹果切片对流干燥过程热湿影响因素模拟. 煤气与热力. 2022(12): 14-19 .
    8. 李佳欢,杨斌,任佳媛,金文松,孙淑静,胡开辉. 热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响. 菌物学报. 2021(12): 3304-3319 .
    9. 蒋华彬,白洁,张小飞,李经伟,李玉美,郭宏,彭义交. 气流膨化过程中马铃薯方便粥水分变化动力学模型及品质变化分析. 食品科学. 2021(23): 137-144 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (134) PDF downloads (12) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return