ZHU Hequan, LI Yong, LI Chunyang, et al. Analyzing of the Composition and Medicinal Properties of Gastrodia elata during Cooking Based on Metabonomics and Network Pharmacology[J]. Science and Technology of Food Industry, 2023, 44(3): 29−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060102.
Citation: ZHU Hequan, LI Yong, LI Chunyang, et al. Analyzing of the Composition and Medicinal Properties of Gastrodia elata during Cooking Based on Metabonomics and Network Pharmacology[J]. Science and Technology of Food Industry, 2023, 44(3): 29−39. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060102.

Analyzing of the Composition and Medicinal Properties of Gastrodia elata during Cooking Based on Metabonomics and Network Pharmacology

More Information
  • Received Date: June 13, 2022
  • Available Online: November 24, 2022
  • Objective: To explain the changes of composition and medicinal properties of Gastrodia elata during cooking by metabonomics, network pharmacology and molecular docking techniques. Methods: The components of Gastrodia elata were detected by LC-QTOF-MS and analyzed by R language. The bioactive ingredients were screened through PubChem database and literature. Swiss target prediction database and SEA database were used to predict the potential targets of the active ingredients, while GeneCards database and OMIM database were used to search for diseases-related targets. The STRING 11.5 database and Cytoscape3.8.2 software were used to construct drug-compound-target network and target protein interaction network. GO enrichment and KEGG pathway annotation analysis of intersection targets were performed by DAVID database and OmicShare Tools. Results: 89 Components with different contents were found in cooked Gastrodia elata and fresh Gastrodia elata. 11 Compounds were screened for the treatment of convulsion by 410 potential targets, and 5 compounds were screened for the treatment of diabetes and its complications by 698 potential targets. GO and KEGG enrichment analysis showed that Gastrodia elata treated convulsion through IL-17 signaling pathway, cAMP signaling pathway, neuroactive substance receptor signaling pathway, Alzheimer's disease signaling pathway and dopaminergic synaptic signaling pathway, while treated diabetes through AGE-RAGE signaling pathway, HIF-1, VEGF and TNF signaling pathway. The results of molecular docking showed that the selected components were all bound to the cavity of the target protein, and the binding free energy was less than 0 kcal/mol, and the molecular docking conformation was stable. Conclusion: Cooked Gastrodia elata has better neuroprotective effect, and fresh Gastrodia elata has better effect in treating diabetes mellitus and cardiovascular diseases.
  • [1]
    黎荣. 国家地理标识 德江天麻[J]. 大众科学,2017,323(3):19. [LI R. National geographical indication-Dejiang Tianma[J]. China Public Science,2017,323(3):19.
    [2]
    唐春梓, 廖朝林, 林先明, 等. 天麻的研究现状与展望[J]. 中国现代中药,2008(6):10−12,14. [TANG C Z, LIAO Z L, LIN X M. Research status and prospect of Gastrodia elata[J]. Modern Chinese Medicine,2008(6):10−12,14. doi: 10.3969/j.issn.1673-4890.2008.06.003
    [3]
    ZHOU B, TAN J, ZHANG C, et al. Neuroprotective effect of polysaccharides from Gastrodia elata Blume against corticosterone-induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway[J]. Molecular Medicine Reports,2017,17(1):1182−1190.
    [4]
    YU L, LI M, XU J Z, et al. Gastrodia elata attenuates inflammatory response by inhibiting the NF-κB pathway in rheumatoid arthritis fibroblast-like synoviocytes[J]. Biomedicine & Pharmacotherapy,2017,85:177−181.
    [5]
    LIU Y, HUANG G. The chemical composition, pharmacological effects, clinical applications and market analysis of Gastrodia elata[J]. Pharmaceutical Chemistry Journal,2017,51(3):1−5.
    [6]
    ANHUAN S, JIAN M X, FANG Y H, et al. The phenolic components of Gastrodia elata improve prognosis in rats after cerebral ischemia/reperfusion by enhancing the endogenous antioxidant mechanisms[J]. Oxidative Medicine and Cellular Longevity,2018,2018:1−16.
    [7]
    高可新, 李利霞, 王小康. 不同炮制方法对黄芩活性成份含量及抗氧化作用的影响[J]. 中国合理用药探索,2021,18(9):109−113. [GAO K X, LI L X, WANG X K. Effects of different processing methods on the content of active components and antioxidant effect of Scutellaria baicalensis[J]. Chinese Journal of Rational Drug Use,2021,18(9):109−113.
    [8]
    赵翡翠. 新疆准噶尔乌头亲缘关系、炮制毒效活性及化学成分研究[D]. 乌鲁木齐: 新疆医科大学, 2015

    ZHAO F C. Studies on the phylogenetic relationship, toxic activity during processing and chemical compositions of Xingjiang Aconitum soongaricum[D]. Urumqi: Xinjiang Medical University, 2015.
    [9]
    李清, 谢宇璐, 许攀, 等. 基于溶剂法研究建昌帮姜天麻不同部位主成分差异[J]. 南昌工程学院学报,2020,39(4):90−95. [LI Q, XIE Y L, XU P, et al. Study on principal component difference of different parts of Jianchang Bang Gastrodia elata processed by ginger based on solvent method[J]. Journal of Nanchang Institute of Technology,2020,39(4):90−95. doi: 10.3969/j.issn.1006-4869.2020.04.017
    [10]
    刘启月, 李勇, 陈小龙, 等. 基于代谢组学分析桃胶中酚类化合物含量及抗氧化活性[J]. 江苏农业学报,2021,37(3):746−753. [LIU Q Y, LI Y, CHENG X L, et al. Analysis on phenolics contents and antioxidant activity in peach gum based on metabolomics[J]. Jiangsu J of Agr Sci,2021,37(3):746−753.
    [11]
    杨二冰, 李正名. 药物分子设计中的Lipinski规则[J]. 化学通报,2006(1):16−19. [YANG E B, LI Z M. The Lipinski' s rules in drug discovery[J]. Chemistry,2006(1):16−19. doi: 10.14159/j.cnki.0441-3776.2006.01.003
    [12]
    陈钰婷, 王俊玲, 吴依娜. 基于网络药理学和分子对接探讨地稔治疗宫颈癌的分子机制[J]. 世界科学技术-中医药现代化,2021,23(9):10. [CHEN Y T, WANG J L, WU Y N. Study on the molecular mechanism of Melastoma dodecandrum Lour in treating cervical cancer based on network pharmacology and molecular docking[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2021,23(9):10.
    [13]
    杨飞, 王信, 马传江, 等. 天麻加工炮制、成分分析与体内代谢研究进展[J]. 中国中药杂志,2018,43(11):2207−2215. [YANG F, WANG X, MA C J, et al. Research progress of Gastrodiae rhizoma machining processing, composition analysis and in vivo metabolism[J]. China Journal of Chinese Materia Medica,2018,43(11):2207−2215. doi: 10.19540/j.cnki.cjcmm.20180322.008
    [14]
    田紫平, 肖慧, 冯舒涵, 等. 天麻有效成分巴利森苷的降解规律分析[J]. 中国实验方剂学杂志,2017,23(23):18−21. [TIAN Z P, XIAO H, FENG S H, et al. Analysis of degradation mechanism of parishin in Gastrodiae rhizoma[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(23):18−21. doi: 10.13422/j.cnki.syfjx.2017230018
    [15]
    DOWSETT L, HIGGINS E, ALANAZI S, et al. ADMA: A key player in the relationship between vascular dysfunction and inflammation in atherosclerosis[J]. Journal of Clinical Medicine,2020,9(9):3026. doi: 10.3390/jcm9093026
    [16]
    李姣锋, 罗健东. 非对称二甲基精氨酸诱导大鼠心肌细胞肥大的作用[J]. 广州医学院学报,2008,159(1):5−9. [LI J F, LUO J D. Induced cardiomyocyte hypertrophy in rats by asymmetric dimethyl-arginine[J]. Academic Journal of Guangzhou Medical College,2008,159(1):5−9.
    [17]
    MIRVISH S S, SAMS J, HECHT S S. Kinetics of nornicotine and anabasine nitrosation in relation to, n’-nitrosonornicotine occurrence in tobacco and to tobacco-induced cancer 2[J]. JNCI: Journal of the National Cancer Institute,1977,59(4):1211−1213. doi: 10.1093/jnci/59.4.1211
    [18]
    GUILLEMIN G J. Quinolinic acid, the inescapable neurotoxin[J]. FEBS J,2012(8):65−1356.
    [19]
    STRAIN W D, PALDÁNIUS P M. Diabetes, cardiovascular disease and the microcirculation[J]. Cardiovasc Diabetol,2018(1):57.
    [20]
    MANAHARAN T, MING C H, PALANISAMY U D. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells[J]. Food Chem,2012(2):354−363.
    [21]
    KHALLOUKI F, HAUBNER R, ULRICH C M, et al. Ethnobotanical survey, chemical composition, and antioxidant capacity of methanolic extract of the root bark of Annona cuneata Oliv.[J]. Journal of Medicinal Food,2011(11):1397−1402.
    [22]
    HA J H, LEE D U, LEE J T, et al. 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain[J]. J Ethnopharmacol,2000(1):329−333.
    [23]
    LIAN Z, NIWA K, TAGAMI K, et al. Preventive effects of isoflavones, genistein and daidzein, on estradiol-17beta-related endometrial carcinogenesis in mice[J]. Jpn J Cancer Res,2001(7):726−734.
    [24]
    KIM D H, JUNG H A, PARK S J, et al. The effects of daidzin and its aglycon, daidzein, on the scopolamine induced memory impairment in male mice[J]. Archives of Pharmacal Research,2010,33(10):1685. doi: 10.1007/s12272-010-1019-2
    [25]
    SUN A P, CHOI M S, CHO S Y, et al. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice[J]. Life Sciences,2006,79(12):1207−1213. doi: 10.1016/j.lfs.2006.03.022
    [26]
    CAO Y X, YANG X J, JING L, et al. Effects of daidzein sulfates on blood pressure and artery of rats[J]. Basic & Clinical Pharmacology & Toxicology,2010,99(6):425−430.
    [27]
    NAJEEB U, YOUNG L H, IMRAN N M, et al. Nicotinamide inhibits alkylating agent-induced apoptotic neurodegeneration in the developing rat brain[J]. PloS One,2011,6(12):e27093. doi: 10.1371/journal.pone.0027093
    [28]
    KRYZHANOVSKIĬ G N, SHANDRA A A. Effect of diazepam and nicotinamide on convulsive activity of various types[J]. Farmakologiia I Toksikologiia,1985,48(4):21.
    [29]
    PENBERTHY W T. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease[J]. Current Drug Metabolism,2007,8(3):245−266. doi: 10.2174/138920007780362545
    [30]
    NEJABATI H R, SAMADI N, SHAHNAZI V, et al. Nicotinamide and its metabolite N1-methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of polycystic ovary syndrome[J]. Chemico-Biological Interactions,2020,324:109093.
    [31]
    GUVEN M, ARAS A B, AKMAN T, et al. Neuroprotective effect of p-coumaric acid in rat model of embolic cerebral ischemia[J]. Iranian Journal of Basic Medical Sciences,2015,18(4):356.
    [32]
    SHARMA S H, RAJAMANICKAM V, NAGARAJAN S. Antiproliferative effect of p-coumaric acid targets UPR activation by downregulating Grp78 in colon cancer[J]. Chemico-Biological Interactions,2018,291:16−28. doi: 10.1016/j.cbi.2018.06.001
    [33]
    YAMAGUCHI M, MURATA T, RAMOS J W. The botanical component p-hydroxycinnamic acid suppresses the growth and bone metastatic activity of human prostate cancer PC-3 cells in vitro[J]. Journal of Cancer Research and Clinical Oncology,2021,147(2):339−350. doi: 10.1007/s00432-020-03405-5
    [34]
    SABITHA R, NISHI K, GUNASEKARAN V P, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models[J]. Chemico-Biological Interactions,2020,321:109044. doi: 10.1016/j.cbi.2020.109044
    [35]
    HUANG X J, YOU Y Q, XI Y, et al. p-Coumaric acid attenuates IL-1β-induced inflammatory responses and cellular senescence in rat chondrocytes[J]. Inflammation,2020,43(2):619−628. doi: 10.1007/s10753-019-01142-7
    [36]
    ZHANG C, QIN Q, LI H. Targeted therapeutic effect of bavachinin nanospheres on pathological site of chronic asthmatic mice model[J]. Journal of Nanoscience and Nanotechnology,2021,21(2):1085−1090. doi: 10.1166/jnn.2021.18641
    [37]
    GE L N, YAN L, LI C, et al. Bavachinin exhibits antitumor activity against non-small cell lung cancer by targeting PPARγ[J]. Molecular Medicine Reports,2019,20(3):2805−2811.
    [38]
    ZHAO C, GHOSH B, CHAKRABORTY T, et al. Bavachinin mitigates DMH induced colon cancer in rats by altering p53/Bcl2/BAX signaling associated with apoptosis[J]. Biotechnic & Histochemistry,2021,96(3):179−190.
    [39]
    GOVINDULA A, PAI A, BAGHEL S, et al. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: An update[J]. European Journal of Pharmacology,2021,908:174364−174364. doi: 10.1016/j.ejphar.2021.174364
    [40]
    CHENG C Υ, ZHU X Y. Cordycepin mitigates MPTP-induced Parkinson's disease through inhibiting TLR/NF-κB signaling pathway[J]. Life Sciences,2019,223:120−127. doi: 10.1016/j.lfs.2019.02.037
    [41]
    YANG X F, LI Y X, HE Y H, et al. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process[J]. International Immunopharmacology,2015,26(2):401−408. doi: 10.1016/j.intimp.2015.04.017
    [42]
    WU C R, HSIEH M T, HUANG S C, et al. Effects of Gastrodia elata and its active constituents on scopolamine-induced amnesia in rats[J]. Planta Medica,1996,62(4):317−321. doi: 10.1055/s-2006-957892
    [43]
    HSIEH M T, WU C R, CHEN C F. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats[J]. Journal of Ethnopharmacology,1997,56(1):45−54. doi: 10.1016/S0378-8741(96)01501-2
    [44]
    李旭, 徐天娇, 刘立琨, 等. 天麻素联合异钩藤碱抑制MPP+诱导的PC12细胞凋亡的抗氧化机制[J]. 中国中药杂志,2021,46(2):420−425. [LI X, XU T J, LIU L K, et al. Antioxidant mechanism of gastrodin combined with isorhynchophylline in inhibiting MPP+-induced apoptosis of PC12 cells[J]. China Journal of Chinese Materia Medica,2021,46(2):420−425.
    [45]
    张志龙, 郜玉钢, 臧埔, 等. 天麻素、对羟基苯甲醇对中枢神经系统作用机制研究进展[J]. 中国中药杂志,2020,45(2):312−320. [ZHANG Z L, GAO Y G, ZANG P, et al. Research progress on mechanism of gastrodin and p-hydroxybenzyl alcohol on central nervous system[J]. China Journal of Chinese Materia Medica,2020,45(2):312−320. doi: 10.19540/j.cnki.cjcmm.20190730.401
    [46]
    QU L L, YU B, LI Z, et al. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway[J]. Phytotherapy Research,2016,30(3):402−11. doi: 10.1002/ptr.5541
    [47]
    KIM S R, KANG S Y, LEE K Y, et al. Anti-amnestic activity of E-p-methoxycinnamic acid from Scrophularia buergeriana[J]. Cognitive Brain Research,2003,17(2):454−461. doi: 10.1016/S0926-6410(03)00161-7
    [48]
    ATTIA H, ALBUHAYRI S, ALARAIDH S, et al. Biotin, coenzyme Q10, and their combination ameliorate aluminium chloride-induced Alzheimer's disease via attenuating neuroinflammation and improving brain insulin signaling[J]. Journal of Biochemical and Molecular Toxicology,2020,34(9):e22519.
    [49]
    JEFF G M D, CDE B A, VIJAYA F A, et al. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial[J]. American Journal of the Medical Sciences,2007,333(3):145−153. doi: 10.1097/MAJ.0b013e318031b3c9
    [50]
    CHEN Z Q, WANG C, PAN Y X. et al. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice[J]. Food & Function,2018,9(1):426−439.
    [51]
    CUI C, ZHANG S, YOU L, et al. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins[J]. Food Chemistry,2013,139(1-4):1−8. doi: 10.1016/j.foodchem.2013.01.107
    [52]
    SONG Y S, PARK C M. Luteolin and luteolm-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research,2014,65:70−75. doi: 10.1016/j.fct.2013.12.017
    [53]
    DE S A, CAPORALI S, DI DANIELE N, et al. Anti-inflammatory and proliferative properties of luteolin-7-O-glucoside[J]. International Journal of Molecular Sciences,2021,22(3):1321. doi: 10.3390/ijms22031321
    [54]
    NKA B, SR A, SC A, et al. Involvement of hippocampal agmatine in β 1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice[J]. Neurotoxicology,2020,80:1−11. doi: 10.1016/j.neuro.2020.06.002
    [55]
    KARADAG H C, ULUGOL A, TAMER M, et al. Systemic agmatine attenuates tactile allodynia in two experimental neuropathic pain models in rats[J]. Neuroscience Letters,2003,339(1):88−90. doi: 10.1016/S0304-3940(02)01456-8
    [56]
    FAN J, FENG Z, NING C. Spermidine as a target for cancer therapy[J]. Pharmacological Research,2020,159:104943. doi: 10.1016/j.phrs.2020.104943
    [57]
    MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science,2018,359(6374):eaan2788. doi: 10.1126/science.aan2788
    [58]
    ZHANG Y H, ZHOU J X, ZHANG N H, et al. Process optimization for production of ferulic acid and pentosans from wheat brans by solid-state fermentation and evaluation of their antioxidant activities[J]. ACS Food Science & Technology,2022,2(7):1114−1122.
    [59]
    LI D, RUI Y X, GUO S D, et al. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives[J]. Life Sciences,2021,284:119921. doi: 10.1016/j.lfs.2021.119921
    [60]
    LEE W, CHOO S, SIM H, et al. Inhibitory activities of ononin on particulate matter-induced oxidative stress[J]. Biotechnology and Bioprocess Engineering,2021,26(2):208−215. doi: 10.1007/s12257-020-0294-0
    [61]
    DONG L, YIN L, ZHANG Y B, et al. Anti-inflammatory effects of ononin on lipopolysaccharide-stimulated RAW 264.7 cells[J]. Molecular Immunology,2017,83:46−51. doi: 10.1016/j.molimm.2017.01.007
    [62]
    PRIKSZ D, LAMPE N, KOVACS A, et al. Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy[J]. British Journal of Pharmacology,2022,179(10):2240−2258. doi: 10.1111/bph.15749
    [63]
    戎立保, 易文. 半夏的炮制方式及其对药效的影响探析[J]. 中国社区医师,2021,37(25):11−12. [RONG L B, YI W. The processing method of Pinellia ternata and its effect on the efficacy[J]. Chinese Community Doctors,2021,37(25):11−12. doi: 10.3969/j.issn.1007-614x.2021.25.005
    [64]
    BAUMKTTER F, SCHMIDT N, VARGAS C, et al. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain[J]. Journal of Neuroscience,2014,34(33):11159−11172. doi: 10.1523/JNEUROSCI.0180-14.2014
    [65]
    MIZUKAMI K, AKATSU H, ABRAHAMSON E E, et al. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease[J]. Neuropathology,2015(2):45−135.
    [66]
    JI Z, DONALDSON I J, LIU J, et al. The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation[J]. Molecular and Cellular Biology,2012,32(2):385−398. doi: 10.1128/MCB.05504-11
    [67]
    BOSSIS G, MALNOU C E, FARRAS R, et al. Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation[J]. Molecular and Cellular Biology,2005,25(16):6964−6979. doi: 10.1128/MCB.25.16.6964-6979.2005
    [68]
    MURPHY J F, FITZGERALD D J. Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the Vegf-2 receptor[J]. Faseb Journal,2001,15(9):1667−1669. doi: 10.1096/fj.00-0757fje
    [69]
    HABIB A A, CHATTERJEE S, PARK S K, et al. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-κB (NF-κB)-inducing kinase to activate NF-κB identification of a novel receptor-tyrosine kinase signalosome[J]. Journal of Biological Chemistry,2001,276(12):8865−8874. doi: 10.1074/jbc.M008458200
    [70]
    YAMAMOTO T, SEKINE Y, KASHIMA K, et al. The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation[J]. Biochemical & Biophysical Research Communications,2002,297(4):811−817.
    [71]
    AGRAWAL N K, KANT S. Targeting inflammation in diabetes: Newer therapeutic options[J]. World J Diabetes,2014(5):697−710.
    [72]
    TSALAMANDRIS S, ANTONOPOULOS A S, OIKONOMOU E, et al. The role of inflammation in diabetes: Current concepts and future perspectives[J]. European Cardiology,2019,14(1):50−59. doi: 10.15420/ecr.2018.33.1
  • Cited by

    Periodical cited type(12)

    1. 杨洪焱,何雨淇,牛淼,李雄宇,徐亚文,张方坤,李家华. 不同产地不同贮藏时间普洱熟茶香气成分分析. 食品工业科技. 2025(05): 218-229 . 本站查看
    2. 黄海,张晓洲,罗金龙,胡正军,张拓,戴宇樵,陈泳铭,王迅,周雪. 基于气味活度值法分析炒青绿茶与烘青绿茶的香气特征差异. 贵州农业科学. 2025(02): 112-119 .
    3. 吴应奇,陈婷,黎敏,庞月兰,郭春雨. 不同地区桂北大叶种古树白茶感官及品质成分分析. 食品科技. 2025(02): 105-112 .
    4. 马雪妮,丁小维,张李旭,李健苗. 一株“金花”菌的分离鉴定及其发酵茶叶研究. 食品与发酵工业. 2025(07): 293-299 .
    5. 黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 .
    6. 李子怡,王锋,赵玲艳,徐永兵,罗凤莲. 基于HS-SPME-GC-MS和多元统计学分析华容芥菜的特征挥发性风味成分. 中国酿造. 2024(03): 234-242 .
    7. 陈国和,胡腾飞,王乐涯,欧行畅,李勤,黄建安,刘仲华,王超. 基于顶空固相微萃取-气相色谱-嗅闻仪-质谱仪结合气味活力值鉴定槟榔香六堡茶关键香气物质. 食品与发酵工业. 2024(08): 271-277 .
    8. 赵志强,陈罗君,饶雨,徐璐,饶军,雷志勇,张丽,高银祥. 基于HS-SPME-GC-MS对不同等级双井绿茶香气物质的研究. 食品工业科技. 2024(10): 273-281 . 本站查看
    9. 梁贤智,骆妍妃,阳景阳,农玉琴,陈杏,梁光志,陈远权. 不同干燥工艺对金牡丹茶树花品质及挥发性风味成分的影响. 食品工业科技. 2024(15): 253-263 . 本站查看
    10. 杨桂强,李吉生,莫璋红,吴玉钧,吕敏,陆燕. 六堡茶香气成分及检测技术研究进展. 中南农业科技. 2024(08): 247-249 .
    11. 马莹,刘谢缘,王碧生,翁淑燚,李利君,倪辉. 焙火工艺对白芽奇兰茶叶挥发性香气成分的影响. 食品科学. 2024(19): 123-129 .
    12. 徐秀娟,薛云,胡军,白家峰,马骥,孙建生,杨春强,吴彦. 糯米香净油的制备及其热裂解产物. 烟草科技. 2023(10): 70-81 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (331) PDF downloads (50) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return