Citation: | WANG Zhimin, MA Jinling, SUN Zhaoyong, et al. Antimicrobial Activity and Identification of Antimicrobial Substances of Antagonistic Bacteria against Black Spot of Sweet Potato[J]. Science and Technology of Food Industry, 2023, 44(4): 50−58. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040326. |
[1] |
汤丽琴, 徐玉娟, 唐道邦, 等. 4种甘薯的营养成分分析[J]. 食品工业,2020,41(11):336−339. [TANG L Q, XU Y J, TANG D B, et al. Analysis of the nutritional content of four sweet potatoes[J]. The Food Industry,2020,41(11):336−339.
|
[2] |
PAN Y F, CHEN L, PANG L L, et al. Ultrasound treatment inhibits browning and improves antioxidant capacity of fresh-cut sweet potato during cold storage[J]. RSC Advances,2020,10(16):9193−9202. doi: 10.1039/C9RA06418D
|
[3] |
DOVENE A K, WANG L, BOKHARY S U F, et al. Effect of cutting styles on quality and antioxidant activity of stored fresh-cut sweet potato (Ipomoea batatas L.) cultivars[J]. Foods,2019,8(12):674. doi: 10.3390/foods8120674
|
[4] |
PAUL N C, NAM S-S, KACHROO A, et al. Characterization and pathogenicity of sweet potato (Ipomoea batatas) black rot caused by Ceratocystis fimbriata in Korea[J]. European Journal of Plant Pathology,2018,152(3):833−840. doi: 10.1007/s10658-018-1522-8
|
[5] |
XING K, LI T J, LIU Y F, et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato[J]. Food Chemistry,2018,268:188−195. doi: 10.1016/j.foodchem.2018.06.088
|
[6] |
WANG C J, WANG Y Z, CHU Z H, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology,2020,253:153260. doi: 10.1016/j.jplph.2020.153260
|
[7] |
申燕飞, 吴玲艳, 郑剑英, 等. 甘薯贮藏冷害研究现状[J]. 保鲜与加工,2017,17(6):132−135. [SHEN Y F, WU L Y, ZHENG J Y, et al. The research situation on chilling injury of sweet potatos during storage[J]. Storage and Process,2017,17(6):132−135.
|
[8] |
解则义, 李洪民, 马代夫, 等. 低温胁迫影响甘薯贮藏的研究进展[J]. 植物生理学报,2017,53(5):758−767. [XIE Z Y, LI H M, MA D F, et al. Research progress of the effects of low temperature stress on the sweet potato during storage[J]. Plant Physiology Journal,2017,53(5):758−767.
|
[9] |
CAO S F, YANG Z F, CAI Y T, et al. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit[J]. Food Chemistry,2014,163:92−96. doi: 10.1016/j.foodchem.2014.04.084
|
[10] |
CHEN Y, ZHOU Y D, LABORDA P, et al. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato[J]. Pest Management Science,2021,77(10):4564−4571. doi: 10.1002/ps.6495
|
[11] |
DROBY S, WISNIEWSKI M, TEIXIDÓC N, et al. The science, development, and commercialization of postharvest biocontrol products[J]. Postharvest Biology and Technology,2016,122:22−29. doi: 10.1016/j.postharvbio.2016.04.006
|
[12] |
OKSANA L, MARYAM S, SASAN A, et al. Bacillus spp
|
[13] |
ZHANG Y, LI T J, LIU Y F, et al. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potato[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3702−3710. doi: 10.1021/acs.jafc.9b00289
|
[14] |
RAJAOFERA M J N, WANG Y, DAHAR G Y, et al. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of colletotrichum gloeosporioides[J]. Pesticide Biochemistry and Physiology,2019,156:170−176. doi: 10.1016/j.pestbp.2019.02.019
|
[15] |
ZHOU M S, LI P Z, WU S Y, et al. Bacillus subtilis CF-3 volatile organic compounds inhibit Monilinia fructicola growth in peach fruit[J]. Frontiers in Microbiology,2019,10:1804. doi: 10.3389/fmicb.2019.01804
|
[16] |
卫郑霞. 甘薯采后黑斑病拮抗菌的筛选和拮抗效果的研究[D]. 泰安: 山东农业大学, 2018
WEI Z X. Selection of antagonistic microorganisms and their control effect against Ceratocystis fimbriata disease of postharvest Ipomoeabatatas[D]. Taian: Shandong Agricultural University, 2018.
|
[17] |
LIU C, YIN X H, WANG Q G, et al. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit[J]. Journal of the Science of Food and Agriculture,2018,98(15):5756−5763. doi: 10.1002/jsfa.9125
|
[18] |
GAO H Y, LI P Z, XU X X, et al. Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation[J]. Frontiers in Microbiology,2018,9:456. doi: 10.3389/fmicb.2018.00456
|
[19] |
邵悦春, 付晓婷, 许加超, 等. 基于气相离子迁移谱的发酵海带风味分析[J]. 食品工业科技,2021,42(12):300−306. [SHAO Y C, FU X T, XU J C, et al. Flavor analysis of fermented laminaria japonica based on gas chromatograph-ion mobility spectrometer (GC-IMS)[J]. Science and Technology of Food Industry,2021,42(12):300−306.
|
[20] |
王明林, 乔鲁芹, 张莉, 等. 固相微萃取-气相色谱/质谱测定植物叶片中的挥发性物质[J]. 色谱,2006(4):343−346. [WANG M L, QIAO L Q, ZHANG L, et al. Analysis of volatile conatituents from leaves of plants by gas chromatograph/mass spectrometry with solid-phase microextraction[J]. Chinese Journal of Chromatography,2006(4):343−346.
|
[21] |
OSAKI C, YAMAGUCHI K, URAKAWA S, et al. The bacteriological properties of Bacillus Strain TM-I-3 and analysis of the volatile antifungal compounds emitted by this bacteria[J]. Biocontrol Science,2019,24(3):129−136. doi: 10.4265/bio.24.129
|
[22] |
陈雪, 倪鹏, 喻勇新, 等. 李斯特属细菌特征挥发性代谢物的鉴定分析[J]. 食品科学,2013,34(10):231−237. [CHEN X, NI P, YU Y X, et al. Characterization of volatile metabolites of Listeria spp. strain
|
[23] |
DHAKSHINAMOORTHY D, SUNDARESAN S, IYADURAI A, et al. Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.)[J]. Plant Pathology Journal,2020,36(2):133−147. doi: 10.5423/PPJ.OA.03.2019.0072
|
[24] |
LI M F, SUN K L, FANG Y S, et al. Toxic effects of acetone, 2-pentanone, and 2-hexanone on physiological indices of wheat (Triticum aestivum L.) germination and seedlings[J]. Environmental Science and Pollution Research International,2021,28(45):64552−64560. doi: 10.1007/s11356-021-15496-9
|
[25] |
LEE B, LIN P C, CHA H S, et al. Characterization of volatile compounds in cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis[J]. Food Science and Biotechnology,2016,25(5):1319−1326. doi: 10.1007/s10068-016-0207-3
|
[26] |
ROMINA L A, RODRÍGUEZ F J, GUARDA A, et al. Application of β-cyclodextrin/2-nonanone inclusion complex as active agent to design of antimicrobial packaging films for control of Botrytis cinerea[J]. Food and Bioprocess Technology,2017,10(9):1584−1594.
|
[27] |
余璐, 魏琛, 张凯歌, 等. 异辛醇对稻谷中霉菌及其毒素的抑制作用研究[J]. 粮食与油脂,2022,35(5):65−69,79. [YU L, WEI C, ZHANG K G, et al. Inhibitory effect of isooctanol on molds and mycotoxins in paddy rice[J]. Cereals and Oils,2022,35(5):65−69,79. doi: 10.3969/j.issn.1008-9578.2022.05.016
|
[28] |
SATISH K R, MOSHE S. The bacillary postbiotics, including 2-undecanone, suppress the virulence of pathogenic microorganisms[J]. Pharmaceutics,2022,14(962):962.
|
[29] |
MADDALENA R, RUSSELL M, SULLIVAN D P, et al. Formaldehyde and other volatile organic chemical emissions in four FEMA temporary housing units[J]. Environmental Science and Technology,2009,43(15):5626−5632. doi: 10.1021/es9011178
|
[30] |
WU Y C, YUAN J, E Y, et al. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens[J]. Journal of Basic Microbiology,2015,55(9):1104−1117. doi: 10.1002/jobm.201400906
|
[31] |
GU R X, ZHU S H, ZHOU J, et al. Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution[J]. European Journal of Plant Pathology,2014,139(2):369−378. doi: 10.1007/s10658-014-0393-x
|
[32] |
XU M J, GUO J H, LI T J, et al. Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato[J]. Journal of Agricultural and Food Chemistry,2021,69:13045−13054. doi: 10.1021/acs.jafc.1c04585
|
[33] |
BU S W, MUNIR S, HE P F, et al. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea[J]. Biological Control,2021,157:104568. doi: 10.1016/j.biocontrol.2021.104568
|
[34] |
MU Y P, YUE Y, GU G R, et al. Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease[J]. Journal of Plant Diseases and Protection,2020,127:367−378. doi: 10.1007/s41348-020-00309-x
|
[35] |
ZHANG D, QIANG R, ZHAO J, et al. Mechanism of a volatile organic compound (6-methyl-2-heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato[J]. Frontiers in Microbiology,2022,12:808337. doi: 10.3389/fmicb.2021.808337
|
[36] |
汪静杰, 赵东洋, 刘永贵, 等. 解淀粉芽孢杆菌SWB16菌株脂肽类代谢产物对球孢白僵菌的拮抗作用[J]. 微生物学报,2014,54(7):778−785. [WANG J J, ZHAO D Y, LIU Y G, et al. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16[J]. Microbiology China,2014,54(7):778−785.
|
[37] |
ZHANG Q X, ZHANG Y, SHAN H H, et al. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10[J]. Environmental Science and Pollution Research International,2017,24(32):25000−25009. doi: 10.1007/s11356-017-0179-8
|
[1] | DUAN Xiaolin, FAN Yan, WANG Jinlin, JIANG Xiaoming, XU Xinxing, ZHANG Xuqing, LIU Li, LIU Kang, ZHAO Yuanhui. Isolation, Identification and Antimicrobial Activity Analysis of Antimicrobial Peptides from Epidermis Mucus of Sturgeon[J]. Science and Technology of Food Industry, 2023, 44(18): 67-75. DOI: 10.13386/j.issn1002-0306.2022110148 |
[2] | ZHANG Qiao, NONG Jian-biao, NONG Jin-huan, DUAN Zhen-hua. Isolation,Identification and Antimicrobial Activity of Antagonistic Bacteria from Eleocharis dulcis(Burm.f.)Trin. ex Hensch.Surface[J]. Science and Technology of Food Industry, 2020, 41(10): 107-111,117. DOI: 10.13386/j.issn1002-0306.2020.10.018 |
[3] | ZHU Jian-ning, CAO Lei, WEN Peng-cheng, YANG Min, WANG Yue, ZHANG Zhong-ming, ZHANG Wei-bing. Comparison of Tolerance and Antibacterial Activity of Lactic Acid Bacteria from Yak Qula[J]. Science and Technology of Food Industry, 2020, 41(7): 115-120,125. DOI: 10.13386/j.issn1002-0306.2020.07.020 |
[4] | JIN Ruo-zhou, LI Fei-fan, ZENG yuan-yuan, PAN Sai-chao, MEI Xiao-hong. Optimization of Extraction Process of Phytosterol from Chickpea and Its Antimicrobial Activity[J]. Science and Technology of Food Industry, 2019, 40(24): 172-177,184. DOI: 10.13386/j.issn1002-0306.2019.24.028 |
[5] | WANG Hui, ZENG Xiao-fang, FENG Wei-hua, YU Li-mei, ZHAI Wan-jing, BAI Wei-dong, ZENG Ling-gang. Antimicrobial Activity and Mechanism of Limonoids from Lemon Peel against Rhizopus[J]. Science and Technology of Food Industry, 2019, 40(8): 102-107. DOI: 10.13386/j.issn1002-0306.2019.08.018 |
[6] | SUN Jun-liang, DU Han-mei, LIANG Xin-hong, RAN Jun-jian, CHANG Guan-hong, YU Xin-ling. Antimicrobial Activity of Dehydroepiandrosterone in Sweet Potato Residue[J]. Science and Technology of Food Industry, 2018, 39(22): 6-11,16. DOI: 10.13386/j.issn1002-0306.2018.22.002 |
[7] | ZHANG Hong-mei, FU Dan-dan, ZHAO Jun-feng, WANG Da-hong, LI Shi-chang, ZHANG Min. Screening of Bacillus with Antimicrobial Activity from Pickles and Physicochemical Characteristics of Bacteriocin[J]. Science and Technology of Food Industry, 2018, 39(14): 110-114,119. DOI: 10.13386/j.issn1002-0306.2018.14.020 |
[8] | LI Ya-ru, ZHOU Lin-yan, LI Shu-rong, CAO Zhen-zhen, ZHANG Le, WEI Ming, NIE Ying, TANG Xuan-ming. Study on antimicrobial activity of essential oils of dried apricots[J]. Science and Technology of Food Industry, 2014, (20): 137-141. DOI: 10.13386/j.issn1002-0306.2014.20.021 |
[9] | HUANG Xiao-min, YU Xin, HUANG Jie. Antimicrobial activities of flavonoids from Pinus massoniana needles on food spoilage bacteria[J]. Science and Technology of Food Industry, 2014, (15): 67-71. DOI: 10.13386/j.issn1002-0306.2014.15.005 |
[10] | HUANG Zhi-ying, LEI Qiao, BAO Jian-qiang, XUN Qian-nan, ZHANG Yu-ting. Study on packaging performance and antimicrobial properties of antibacterial composite protein films[J]. Science and Technology of Food Industry, 2014, (06): 288-291. DOI: 10.13386/j.issn1002-0306.2014.06.053 |