Citation: | WANG Zhimin, MA Jinling, SUN Zhaoyong, et al. Antimicrobial Activity and Identification of Antimicrobial Substances of Antagonistic Bacteria against Black Spot of Sweet Potato[J]. Science and Technology of Food Industry, 2023, 44(4): 50−58. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040326. |
[1] |
汤丽琴, 徐玉娟, 唐道邦, 等. 4种甘薯的营养成分分析[J]. 食品工业,2020,41(11):336−339. [TANG L Q, XU Y J, TANG D B, et al. Analysis of the nutritional content of four sweet potatoes[J]. The Food Industry,2020,41(11):336−339.
|
[2] |
PAN Y F, CHEN L, PANG L L, et al. Ultrasound treatment inhibits browning and improves antioxidant capacity of fresh-cut sweet potato during cold storage[J]. RSC Advances,2020,10(16):9193−9202. doi: 10.1039/C9RA06418D
|
[3] |
DOVENE A K, WANG L, BOKHARY S U F, et al. Effect of cutting styles on quality and antioxidant activity of stored fresh-cut sweet potato (Ipomoea batatas L.) cultivars[J]. Foods,2019,8(12):674. doi: 10.3390/foods8120674
|
[4] |
PAUL N C, NAM S-S, KACHROO A, et al. Characterization and pathogenicity of sweet potato (Ipomoea batatas) black rot caused by Ceratocystis fimbriata in Korea[J]. European Journal of Plant Pathology,2018,152(3):833−840. doi: 10.1007/s10658-018-1522-8
|
[5] |
XING K, LI T J, LIU Y F, et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato[J]. Food Chemistry,2018,268:188−195. doi: 10.1016/j.foodchem.2018.06.088
|
[6] |
WANG C J, WANG Y Z, CHU Z H, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology,2020,253:153260. doi: 10.1016/j.jplph.2020.153260
|
[7] |
申燕飞, 吴玲艳, 郑剑英, 等. 甘薯贮藏冷害研究现状[J]. 保鲜与加工,2017,17(6):132−135. [SHEN Y F, WU L Y, ZHENG J Y, et al. The research situation on chilling injury of sweet potatos during storage[J]. Storage and Process,2017,17(6):132−135.
|
[8] |
解则义, 李洪民, 马代夫, 等. 低温胁迫影响甘薯贮藏的研究进展[J]. 植物生理学报,2017,53(5):758−767. [XIE Z Y, LI H M, MA D F, et al. Research progress of the effects of low temperature stress on the sweet potato during storage[J]. Plant Physiology Journal,2017,53(5):758−767.
|
[9] |
CAO S F, YANG Z F, CAI Y T, et al. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit[J]. Food Chemistry,2014,163:92−96. doi: 10.1016/j.foodchem.2014.04.084
|
[10] |
CHEN Y, ZHOU Y D, LABORDA P, et al. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato[J]. Pest Management Science,2021,77(10):4564−4571. doi: 10.1002/ps.6495
|
[11] |
DROBY S, WISNIEWSKI M, TEIXIDÓC N, et al. The science, development, and commercialization of postharvest biocontrol products[J]. Postharvest Biology and Technology,2016,122:22−29. doi: 10.1016/j.postharvbio.2016.04.006
|
[12] |
OKSANA L, MARYAM S, SASAN A, et al. Bacillus spp
|
[13] |
ZHANG Y, LI T J, LIU Y F, et al. Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potato[J]. Journal of Agricultural and Food Chemistry,2019,67(13):3702−3710. doi: 10.1021/acs.jafc.9b00289
|
[14] |
RAJAOFERA M J N, WANG Y, DAHAR G Y, et al. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of colletotrichum gloeosporioides[J]. Pesticide Biochemistry and Physiology,2019,156:170−176. doi: 10.1016/j.pestbp.2019.02.019
|
[15] |
ZHOU M S, LI P Z, WU S Y, et al. Bacillus subtilis CF-3 volatile organic compounds inhibit Monilinia fructicola growth in peach fruit[J]. Frontiers in Microbiology,2019,10:1804. doi: 10.3389/fmicb.2019.01804
|
[16] |
卫郑霞. 甘薯采后黑斑病拮抗菌的筛选和拮抗效果的研究[D]. 泰安: 山东农业大学, 2018
WEI Z X. Selection of antagonistic microorganisms and their control effect against Ceratocystis fimbriata disease of postharvest Ipomoeabatatas[D]. Taian: Shandong Agricultural University, 2018.
|
[17] |
LIU C, YIN X H, WANG Q G, et al. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit[J]. Journal of the Science of Food and Agriculture,2018,98(15):5756−5763. doi: 10.1002/jsfa.9125
|
[18] |
GAO H Y, LI P Z, XU X X, et al. Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation[J]. Frontiers in Microbiology,2018,9:456. doi: 10.3389/fmicb.2018.00456
|
[19] |
邵悦春, 付晓婷, 许加超, 等. 基于气相离子迁移谱的发酵海带风味分析[J]. 食品工业科技,2021,42(12):300−306. [SHAO Y C, FU X T, XU J C, et al. Flavor analysis of fermented laminaria japonica based on gas chromatograph-ion mobility spectrometer (GC-IMS)[J]. Science and Technology of Food Industry,2021,42(12):300−306.
|
[20] |
王明林, 乔鲁芹, 张莉, 等. 固相微萃取-气相色谱/质谱测定植物叶片中的挥发性物质[J]. 色谱,2006(4):343−346. [WANG M L, QIAO L Q, ZHANG L, et al. Analysis of volatile conatituents from leaves of plants by gas chromatograph/mass spectrometry with solid-phase microextraction[J]. Chinese Journal of Chromatography,2006(4):343−346.
|
[21] |
OSAKI C, YAMAGUCHI K, URAKAWA S, et al. The bacteriological properties of Bacillus Strain TM-I-3 and analysis of the volatile antifungal compounds emitted by this bacteria[J]. Biocontrol Science,2019,24(3):129−136. doi: 10.4265/bio.24.129
|
[22] |
陈雪, 倪鹏, 喻勇新, 等. 李斯特属细菌特征挥发性代谢物的鉴定分析[J]. 食品科学,2013,34(10):231−237. [CHEN X, NI P, YU Y X, et al. Characterization of volatile metabolites of Listeria spp. strain
|
[23] |
DHAKSHINAMOORTHY D, SUNDARESAN S, IYADURAI A, et al. Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.)[J]. Plant Pathology Journal,2020,36(2):133−147. doi: 10.5423/PPJ.OA.03.2019.0072
|
[24] |
LI M F, SUN K L, FANG Y S, et al. Toxic effects of acetone, 2-pentanone, and 2-hexanone on physiological indices of wheat (Triticum aestivum L.) germination and seedlings[J]. Environmental Science and Pollution Research International,2021,28(45):64552−64560. doi: 10.1007/s11356-021-15496-9
|
[25] |
LEE B, LIN P C, CHA H S, et al. Characterization of volatile compounds in cowart muscadine grape (Vitis rotundifolia) during ripening stages using GC-MS combined with principal component analysis[J]. Food Science and Biotechnology,2016,25(5):1319−1326. doi: 10.1007/s10068-016-0207-3
|
[26] |
ROMINA L A, RODRÍGUEZ F J, GUARDA A, et al. Application of β-cyclodextrin/2-nonanone inclusion complex as active agent to design of antimicrobial packaging films for control of Botrytis cinerea[J]. Food and Bioprocess Technology,2017,10(9):1584−1594.
|
[27] |
余璐, 魏琛, 张凯歌, 等. 异辛醇对稻谷中霉菌及其毒素的抑制作用研究[J]. 粮食与油脂,2022,35(5):65−69,79. [YU L, WEI C, ZHANG K G, et al. Inhibitory effect of isooctanol on molds and mycotoxins in paddy rice[J]. Cereals and Oils,2022,35(5):65−69,79. doi: 10.3969/j.issn.1008-9578.2022.05.016
|
[28] |
SATISH K R, MOSHE S. The bacillary postbiotics, including 2-undecanone, suppress the virulence of pathogenic microorganisms[J]. Pharmaceutics,2022,14(962):962.
|
[29] |
MADDALENA R, RUSSELL M, SULLIVAN D P, et al. Formaldehyde and other volatile organic chemical emissions in four FEMA temporary housing units[J]. Environmental Science and Technology,2009,43(15):5626−5632. doi: 10.1021/es9011178
|
[30] |
WU Y C, YUAN J, E Y, et al. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens[J]. Journal of Basic Microbiology,2015,55(9):1104−1117. doi: 10.1002/jobm.201400906
|
[31] |
GU R X, ZHU S H, ZHOU J, et al. Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution[J]. European Journal of Plant Pathology,2014,139(2):369−378. doi: 10.1007/s10658-014-0393-x
|
[32] |
XU M J, GUO J H, LI T J, et al. Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato[J]. Journal of Agricultural and Food Chemistry,2021,69:13045−13054. doi: 10.1021/acs.jafc.1c04585
|
[33] |
BU S W, MUNIR S, HE P F, et al. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea[J]. Biological Control,2021,157:104568. doi: 10.1016/j.biocontrol.2021.104568
|
[34] |
MU Y P, YUE Y, GU G R, et al. Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease[J]. Journal of Plant Diseases and Protection,2020,127:367−378. doi: 10.1007/s41348-020-00309-x
|
[35] |
ZHANG D, QIANG R, ZHAO J, et al. Mechanism of a volatile organic compound (6-methyl-2-heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato[J]. Frontiers in Microbiology,2022,12:808337. doi: 10.3389/fmicb.2021.808337
|
[36] |
汪静杰, 赵东洋, 刘永贵, 等. 解淀粉芽孢杆菌SWB16菌株脂肽类代谢产物对球孢白僵菌的拮抗作用[J]. 微生物学报,2014,54(7):778−785. [WANG J J, ZHAO D Y, LIU Y G, et al. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16[J]. Microbiology China,2014,54(7):778−785.
|
[37] |
ZHANG Q X, ZHANG Y, SHAN H H, et al. Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10[J]. Environmental Science and Pollution Research International,2017,24(32):25000−25009. doi: 10.1007/s11356-017-0179-8
|