Citation: | GE Yaojin, LI Yuhao, PENG Shengfeng, et al. Effect of Homogenization Pressure on the Stability and in Vitro Digestion of Flaxseed Oil Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 84−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040202. |
[1] |
韩亚男, 潘士钢, 李海英, 等. 不同产地紫苏籽含油率及α-亚麻酸含量比较[J]. 食品安全导刊,2020(18):102. [HAN Y N, PAN S K, LI H Y, et, al. Comparison of oil content andα-linolenic acid content in perilla seeds from different habitats[J]. China Food Safety Magazine,2020(18):102.
|
[2] |
沙爽, 冯启鑫, 张欣蕊, 等. 亚油酸/α-亚麻酸复合物对小鼠急性肝损伤的预防作用(英文)[J]. 食品科学,2022,18:1−18. [SHA S, FENG Q X, ZHANG X R, et, al. Preventive effect of linoleic acid/α-linolenic acid complex on acute liver injury in mice[J]. Food Science,2022,18:1−18. doi: 10.7506/spkx1002-6630-20210716-191
|
[3] |
柏薇薇. α-亚麻酸及其分布[J]. 食品界,2017(12):82. [PAI W W. α-Linolenic acid and its distribution[J]. Food Industry,2017(12):82.
|
[4] |
刘静, 胡经纬, 周裔彬. 植物油体的提取及其乳化体系研究进展[J]. 食品工业科技,2021,42(12):422−429. [LIU J, HU J W, ZOU Y B. Advances in the extraction and emulsification system of oil bodies: A review[J]. Science and Technology of Food Industry,2021,42(12):422−429.
|
[5] |
徐泽健, 章绍兵. 植物油体制备工艺及其稳定性研究进展[J]. 中国油脂,2016,41(9):41−45. [XU Z J, ZHANG S B. Advance in preparation process and stability of plant oil body[J]. China Oils and Fats,2016,41(9):41−45.
|
[6] |
李婷婷 李志远, 孙静, 等. 牡丹油体提取及其稳定性研究[J]. 中国粮油学报,2019,34(8):98−103. [LI T T, LI Z Y, SUN J, et al. Study on extraction and stability of peony oil[J]. Journal of the Chinese Cereals and Oils,2019,34(8):98−103. doi: 10.3969/j.issn.1003-0174.2019.08.017
|
[7] |
ZAABOUL F, ZHAO Q, XU Y, et al. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects[J]. Food Hydrocolloids,2022,124:107296. doi: 10.1016/j.foodhyd.2021.107296
|
[8] |
LAN X, QIANG W, YANG Y, et al. Physicochemical stability of safflower oil body emulsions during food processing[J]. Lwt,2020,132:109838. doi: 10.1016/j.lwt.2020.109838
|
[9] |
LOPEZ C, NOVALES B, RABESONA H, et al. Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability [J]. Food Res Int, 2021, 150(Pt A): 110759.
|
[10] |
LIZARRAGA M S, PAN L G, AñON M C, et al. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate[J]. Food Hydrocolloids,2008,22(5):868−878. doi: 10.1016/j.foodhyd.2007.04.012
|
[11] |
WANG Q L, LI CUI C, JIANG L Z, et al. Oil bodies extracted from high-fat and low-fat soybeans: stability and composition during storage[J]. J Food Sci,2017,82(6):1319−1325. doi: 10.1111/1750-3841.13715
|
[12] |
王智丰 雷帆, 武艺, 等. 芝麻油体的稳定性及油体膜蛋白结构分析[J]. 食品科技,2019,44(8):190−196. [WANG Z F, LEI F, WU Y, et al. Stability of sesame oil bodies and structure analysis of oil body proteins[J]. Food Science and Technology,2019,44(8):190−196.
|
[13] |
刘竞男 徐晔晔, 王一贺, 等. 高压均质对大豆分离蛋白乳液流变学特性及氧化稳定性的影响[J]. 食品科学,2020,41(1):80−85. [LIU J N, XU Y Y, WANG Y H, et al. Effect of high pressure homogenization on rheological properties and oxidation stability of soy protein isolate-stabilized emulsion[J]. Food Science,2020,41(1):80−85.
|
[14] |
DE CHIRICO S, DI BARI V, FOSTER T, et al. Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media[J]. Food Chemistry,2018,241(15):419−426.
|
[15] |
ZHENG B, ZHANG X, LIN H, et al. Loading natural emulsions with nutraceuticals using the pH-driven method: Formation & stability of curcumin-loaded soybean oil bodies[J]. Food & Function,2019,10(9):5473−5484.
|
[16] |
ZHU Y Q, CHEN X, MCCLEMENTS D J, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2017,39(6):826−835.
|
[17] |
SHANTHA N C, DECKER E A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids[J]. Journal of Aoac International,2020,77(2):421−424.
|
[18] |
LI R, DAI T, TAN Y, et al. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions[J]. Food Chem,2020,310:125828. doi: 10.1016/j.foodchem.2019.125828
|
[19] |
ZOU L, ZHENG B, ZHANG R, et al. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles[J]. Food Research International,2016,81(Mara):74−82.
|
[20] |
MUNOZ O, FUENTEALBA C, AMPUERO D, et al. The effect of Lactobacillus acidophilus and Lactobacillus casei on the in vitro bioaccessibility of flaxseed lignans (Linum usitatissimum L.)[J]. Food Funct,2018,9(4):2426−2432. doi: 10.1039/C8FO00390D
|
[21] |
MCCLEMENTS D J. Principles of ultrasonic droplet size determination in emulsions[J]. Langmuir,1996,12(14):3454−3461. doi: 10.1021/la960083q
|
[22] |
康波. 花生油体乳液稳定性及乳液凝胶的研究[D]. 广州: 华南理工大学, 2010
KANG B, Rerearch on the stability of peanut oil body emulsions and the emulsion gels[D]. Guangzhou: South China University of Technology, 2010
|
[23] |
YAN B, PARK S H, BALASUBRAMANIAM V. Influence of high pressure homogenization with and without lecithin on particle size and physicochemical properties of whey protein-based emulsions[J]. Journal of Food Process Engineering,2017,40(6):e12578. doi: 10.1111/jfpe.12578
|
[24] |
TANG C H, LIU F. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism[J]. Food Hydrocolloids,2013,30(1):61−72. doi: 10.1016/j.foodhyd.2012.05.008
|
[25] |
DING Z, JIANG Y, LIU X. Chapter 12 - nanoemulsions-based drug delivery for brain tumors[M]//KESHARWANI P, GUPTA U. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Academic Press. 2018: 327−358.
|
[26] |
KRSTIĆ M, MEDAREVIĆ Đ, ĐURIŠ J, et al. Chapter 12-Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs [M]//GRUMEZESCU A M. Lipid Nanocarriers for Drug Targeting. William Andrew Publishing. 2018: 473−508.
|
[27] |
CHA Y, SHI X, WU F, et al. Improving the stability of oil-in-water emulsions by using mussel myofibrillar proteins and lecithin as emulsifiers and high-pressure homogenization[J]. Journal of Food Engineering,2019,258(OCTa):1−8.
|
[28] |
SUBIRADE M, LOUPIL F, ALLAIN A F, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by fourier transform infrared spectroscopy[J]. International Dairy Journal,1998,8(2):135−140. doi: 10.1016/S0958-6946(98)00034-X
|
[29] |
MCCLEMENTS D J. Protein-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science,2004,9(5):305−313.
|
[30] |
NEUMANN S M, VAN DER SCHAAF U S, KARBSTEIN H P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,553:464−471. doi: 10.1016/j.colsurfa.2018.05.087
|
[31] |
TZEN J T, CAO Y, LAURENT P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant physiology,1993,101(1):267−276. doi: 10.1104/pp.101.1.267
|
[32] |
齐家兴 廖芮莹, 李红丽, 等. 大豆油体蛋白基因家族的生物信息学分析[J]. 吉林农业大学学报,2021,43(1):51−58. [QI J X, LI H L, WANG S, et, al. Bioinformatics analysis of glycine max oleosin in soybean[J]. Journal of Jilin Agricultural University,2021,43(1):51−58. doi: 10.13327/j.jjlau.2021.4374
|
[33] |
DONG X, ZHAO M, YANG B, et al. Effect of high-pressure homogenization on the functional property of peanut protein[J]. Journal of Food Process Engineering,2011,34(6):2191−2204. doi: 10.1111/j.1745-4530.2009.00546.x
|
[34] |
LIU H H, KUO M I. Ultra high pressure homogenization effect on the proteins in soy flour[J]. Food Hydrocolloids,2016,52:741−748. doi: 10.1016/j.foodhyd.2015.08.018
|
[35] |
YUAN B, REN J, ZHAO M, et al. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate[J]. LWT-Food Science and Technology,2012,46(2):453−459. doi: 10.1016/j.lwt.2011.12.001
|
[36] |
张小影 齐宝坤, 孙禹凡, 等. 盐离子对大豆-乳清混合蛋白液的稳定性及界面特性的影响[J]. 食品工业科技,2021,42(6):22−28. [ZHANG X Y, QI B K, SUN Y F, et al. Effect of salt ion on the stability and interfacial adsorption characteristics of soybean-whey mixed protein emulsion[J]. Science and Technology of Food Industry,2021,42(6):22−28.
|
[37] |
WANG S N , ZHAO H K, QU D N , et al. Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: Effect on emulsion stability[J]. Food Hydrocolloids,2022:107304.
|
[38] |
HOU J, FENG X, JIANG M, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT,2019,113:108263. doi: 10.1016/j.lwt.2019.108263
|
[39] |
ZHOU L Z, CHEN F S, HAO L H, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(10):2812−2819. doi: 10.1111/1750-3841.14801
|
[40] |
HUANG A H C. Oil bodies and oleosins in seeds[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43(1):177−200. doi: 10.1146/annurev.pp.43.060192.001141
|
[41] |
DELEU M, VACA-MEDINA G, FABRE J F, et al. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium[J]. Colloids and Surfaces B: Biointerfaces,2010,80(2):125−132. doi: 10.1016/j.colsurfb.2010.05.036
|
[42] |
IWANAGA D, GRAY D A, FISK I D, et al. Extraction and characterization of oil bodies from soy beans: A natural source of pre-emulsified soybean oil[J]. Journal of agricultural and food chemistry,2007,55(21):8711−8716. doi: 10.1021/jf071008w
|
[43] |
DING J, WEN J, WANG J, et al. The physicochemical properties and gastrointestinal fate of oleosomes from non-heated and heated soymilk[J]. Food Hydrocolloids,2020,100:105418. doi: 10.1016/j.foodhyd.2019.105418
|
[44] |
CHEN B, MCCLEMENTS D J, GRAY D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chem,2012,132(3):1514−1520. doi: 10.1016/j.foodchem.2011.11.144
|
[45] |
TONON R V, GROSSO C R F, HUBINGER M D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying[J]. Food Research International,2011,44(1):282−9. doi: 10.1016/j.foodres.2010.10.018
|
[46] |
FISK I D, WHITE D A, LAD M, et al. Oxidative stability of sunflower oil bodies[J]. European Journal of Lipid Science and Technology,2008,110(10):962−968. doi: 10.1002/ejlt.200800051
|
[47] |
WANG Q, JIANG J, XIONG Y L. High pressure homogenization combined with pH shift treatment: A process to produce physically and oxidatively stable hemp milk[J]. Food Res Int,2018,106:487−494. doi: 10.1016/j.foodres.2018.01.021
|
[48] |
NAKAYA K , USHIO H , MATSUKAWA S, et al. Effects of droplet size on the oxidative stability of oil-in-water emulsions[J]. Lipids,2005,40(5):501. doi: 10.1007/s11745-005-1410-4
|
[49] |
CHANAMAI R, MCCLEMENTS D J. Impact of weighting agents and sucrose on gravitational separation of beverage emulsions[J]. Journal of Agricultural and Food Chemistry,2000,48(11):5561−5565. doi: 10.1021/jf0002903
|
[50] |
LIANG H N, TANG C H. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins[J]. Food Hydrocolloids,2013,33(2):309−319. doi: 10.1016/j.foodhyd.2013.04.005
|
[51] |
ZHENG B, ZHANG X, PENG S, et al. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, nanoemulsion droplets, and natural oil bodies[J]. Food Funct,2019,10(7):4339−4349. doi: 10.1039/C8FO02510J
|
[52] |
ZOU L, ZHENG B, ZHANG R, et al. Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: Comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions[J]. RSC Advances,2016,6(4):3126−3136. doi: 10.1039/C5RA22834D
|
[53] |
LIANG L, ZHANG X, WANG X, et al. Influence of dairy emulsifier type and lipid droplet size on gastrointestinal fate of model emulsions:In vitro digestion study[J]. J Agric Food Chem,2018,66(37):9761−9769. doi: 10.1021/acs.jafc.8b02959
|
[54] |
SINGH H, YE A, HORNE D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion[J]. Prog Lipid Res,2009,48(2):92−100. doi: 10.1016/j.plipres.2008.12.001
|
[55] |
LI Y, HU M, MCCLEMENTS D J. Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method[J]. Food Chemistry,2011,126(2):498−505. doi: 10.1016/j.foodchem.2010.11.027
|
[56] |
CORSTENS M N, BERTON-CARABIN C C, DE VRIES R, et al. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review[J]. Crit Rev Food Sci Nutr,2017,57(10):2218−2244. doi: 10.1080/10408398.2015.1057634
|
[57] |
BRAY G A P B M. Dietary fat intake does affect obesity![J]. The American Fournal of Clinical Nutrition,1998,68(6):1157−1173. doi: 10.1093/ajcn/68.6.1157
|
[58] |
AARAK K E, KIRKHUS B, HOLM H, et al. Release of EPA and DHA from salmon oil-a comparison of in vitro digestion with human and porcine gastrointestinal enzymes[J]. Br J Nutr,2013,110(8):1402−1410. doi: 10.1017/S0007114513000664
|