DAI Yixin, XU Ying, BI Shuang, et al. Extraction and Purification Process Optimization and Functional Properties Analysis of Walnut Meal Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 241−252. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040141.
Citation: DAI Yixin, XU Ying, BI Shuang, et al. Extraction and Purification Process Optimization and Functional Properties Analysis of Walnut Meal Protein[J]. Science and Technology of Food Industry, 2023, 44(2): 241−252. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040141.

Extraction and Purification Process Optimization and Functional Properties Analysis of Walnut Meal Protein

More Information
  • Received Date: April 13, 2022
  • Available Online: November 15, 2022
  • To obtain high-quality walnut meal protein, the process conditions for extraction of walnut meal protein by alkaline solubilization and acid precipitation method and purification of walnut meal protein by glycolytic enzyme were optimized by single-factor experiments and response surface method, respectively, and the functional properties such as solubility, water absorption, and emulsification were analyzed. The optimal extraction process conditions were: pH12, temperature 55 ℃, time 90 min, and material-liquid ratio 1:40 g/mL. Under these conditions, the extraction rate of walnut meal protein could reach 81.89%±1.64%, and its settling point was pH4.5. The optimal purification process conditions were: pH4.5, material-to-liquid ratio 1:40 g/mL, enzymatic digestion time 129 min, enzymatic digestion temperature 53°C, and enzyme addition 0.4%. The purity of walnut meal protein purified under these conditions could reach 94.48%±1.83%. The results of functional properties of walnut protein showed that its solubility was 24.82%, water absorption 3.06 g/g, oil absorption 3.15 g/g, emulsification 16.10 m2/g, emulsification stability 38.87 min, foaming 30.53% and foaming stability 75.44% under the same pH conditions, and the purified walnut protein had better functional properties.
  • [1]
    杨永涛, 潘思源, 靳欣欣, 等. 不同品种核桃的氨基酸营养价值评价[J]. 食品科学,2017,38(13):207−212. [YANG Y T, PAN S Y, JIN X X, et al. Amino acid composition and nutritional evaluation of different varieties of walnut[J]. Food Science,2017,38(13):207−212.
    [2]
    LV S, TAHA A, HU H, et al. Effects of ultrasonic-assisted extraction on the physicochemical properties of different walnut proteins[J]. Molecules,2019,24(23):4260. doi: 10.3390/molecules24234260
    [3]
    苏彦苹, 赵爽, 李保国, 齐国辉, 王明, 王宝庆, 徐业勇. 6个新疆核桃优系核仁营养评价[J]. 中国粮油学报,2017,32(1):59−66,73. [SU Y P, ZHAO S, LI B G, et al. Kernel nutritional evaluation of six walnut excellent strains in Xinjiang[J]. Journal of the Chinese Cereals and Oils Association,2017,32(1):59−66,73.
    [4]
    Z F, AHMAD J, KHAN I, et al. Interaction of phytochemicals from walnut on health: an updated comprehensive review of reported bioactivities and medicinal properties of walnut[J]. Journal of Biologically Active Products from Nature,2019,9(6):410−425. doi: 10.1080/22311866.2019.1709900
    [5]
    GUASCH-FERRÉ M, LI J, HU F B, et al. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials[J]. The American Journal of Clinical Nutrition,2018,108(1):174−187. doi: 10.1093/ajcn/nqy091
    [6]
    DEL G L C, FALK M C, ROBIN F, et al. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials[J]. American Journal of Clinical Nutrition,2015(6):1347−1356.
    [7]
    AUNE D, KEUM N N, GIOVANNUCCI E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies[J]. BMC Medicine,2016,14(1):1−14. doi: 10.1186/s12916-015-0545-7
    [8]
    ZHOU D, YU H, HE F, et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies.[J]. American Journal of Clinical Nutrition,2014,100(1):270−7. doi: 10.3945/ajcn.113.079152
    [9]
    LUO Y, WU W, CHEN D, et al. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology[J]. Pharmaceutical Biology,2017,55(1):1999. doi: 10.1080/13880209.2017.1347189
    [10]
    李俊南, 习学良, 熊新武, 等. 核桃的营养保健功能及功能成分研究进展[J]. 中国食物与营养,2018,24(5):61−65. [LI J N, XI X L, XIONG X W, et al. Nutritional function and functional components of Walnut[J]. Food and Nutrition in China,2018,24(5):61−65.
    [11]
    王帅, 戴涟漪, 库雪晶, 等. 核桃营养组成与保健功能研究进展[J]. 中国酿造,2016,35(6):30−34. [WANG S, DAI L Y, KU X J, et al. Research progress on walnut nutritional composition and health function[J]. China Brewing,2016,35(6):30−34.
    [12]
    SZE‐TAO K W C, SATHE S K. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility[J]. Journal of the Science of Food and Agriculture,2000,80(9):1393−1401. doi: 10.1002/1097-0010(200007)80:9<1393::AID-JSFA653>3.0.CO;2-F
    [13]
    毛晓英, 朱新荣, 万银松, 等. 核桃蛋白的组成分析及分离提取工艺的优化[J]. 中国食品学报,2019,19(3):195−205. [MAO X Y, ZHU X R, WAN Y S, et al. The composition analyses of walnut protein and optimization of extraction process[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(3):195−205. doi: 10.16429/j.1009-7848.2019.03.026
    [14]
    PILAR GARCIA-MENDOZA M, ESPINOSA-PARDO F A, SAVOIRE R, et al. Recovery and antioxidant activity of phenolic compounds extracted from walnut press-cake using various methods and conditions[J]. Industrial Crops and Products,2021,167:113546. doi: 10.1016/j.indcrop.2021.113546
    [15]
    LI W, ZHAO T, ZHANG J, et al. Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice[J]. Journal of food science and technology,2017,54(10):3102−3110. doi: 10.1007/s13197-017-2746-x
    [16]
    豁银强, 刘传菊, 聂荣祖, 等. 核桃蛋白的组成、制备及特性研究进展[J]. 中国粮油学报,2020,35(12):191−197. [HUO Y Q, LIU C J, NIE R Z, et al. Research progress on the composition, preparation and properties of walnut protein[J]. Journal of the Chinese Cereals and Oils Association,2020,35(12):191−197.
    [17]
    冯贞, 方晓璞. 核桃加工副产物综合利用途径[J]. 中国油脂,2018,43(9):78−81,94. [FENG Z, FANG X P. Comprehensive utilization ways of by-products from walnut processing[J]. China Oils and Fats,2018,43(9):78−81,94.
    [18]
    李明娟, 张雅媛, 游向荣, 等. 不同干燥技术对核桃粕蛋白粉品质特性及微观结构的影响[J]. 食品科学,2021,42(5):92−98. [LI M, ZHANG Y Y, YOU X R, et al. Effects of different drying technologies on the quality characteristics and microstructure of walnut meal protein powder[J]. Food Science,2021,42(5):92−98.
    [19]
    MOGHADAM M, SALAMI M, MOHAMMADIAN M, et al. Walnut protein–curcumin complexes: fabrication, structural characterization, antioxidant properties, and in vitro anticancer activity[J]. Journal of Food Measurement and Characterization,2020,14(2):876−885. doi: 10.1007/s11694-019-00336-9
    [20]
    ULLAH S F, KHAN N M, ALI F, et al. Effects of Maillard reaction on physicochemical and functional properties of walnut protein isolate[J]. Food Science and Biotechnology,2019,28(5):1391−1399. doi: 10.1007/s10068-019-00590-z
    [21]
    王琳. 核桃粕蛋白的无酸化制备及其性质研究[D]. 乌鲁木齐: 新疆农业大学, 2016.

    WANG L. Study on preparation and properties of protein of walnut meal by non acidification[D]. Urumqi: Xinjiang Agricultural University, 2016.
    [22]
    王晓飞, 闵伟红, 朱运明,等. 长白山核桃球蛋白的提取、分离纯化及其功能性质研究[J]. 现代食品科技,2015,31(4):234−241. [WANG X F, MIN W H, ZHU Y M, et al. Extraction and purification of globulin from juglans mandshurica maxim and characterization of its functional properties[J]. Modern Food Science and Technology,2015,31(4):234−241.
    [23]
    杨歆萌. 高品质核桃蛋白的制备研究[D]. 武汉: 武汉轻工大学, 2021.

    YANG Y M. Study on preparation of high quality walnut protein[D]. Wuhan: Wuhan Polytechnic University, 2021.
    [24]
    张莹, 彭吟雪, 胡传荣, 等. 超声辅助酶法制备及纯化菜籽蛋白工艺的研究[J]. 粮食与油脂,2018,31(6):31−34. [ZHANG Y, PENG Y X, HU C R, et al. Ultrasonic assisted enzymatic preparation and purification of rapeseed protein technology research[J]. Cereals & Oils,2018,31(6):31−34. doi: 10.3969/j.issn.1008-9578.2018.06.009
    [25]
    宁程茜, 叶展, 王斌, 等. 糖化酶纯化棉籽分离蛋白的工艺研究[J]. 食品工业,2016,37(9):75−79. [NING C X, YE Z, WANG B, et al. Studies on the purification of cottonseed protein associated with glucoamylas[J]. The Food Industry,2016,37(9):75−79.
    [26]
    吴舒同. 铁核桃分离蛋白及多肽制备的研究[D]. 武汉: 武汉轻工大学, 2017.

    WU S T. Preparation of Isolated protein and peptide from Wild Walnut (Juglans sigllata Dode)[D]. wuhan: Wuhan Polytechnic University, 2017.
    [27]
    任娇艳, 史传超, 常博, 等. 核桃蛋白的分离制备及其酶解物的抗氧化特性[J]. 现代食品科技,2019,35(3):118−124. [REN J Y, SHI C C, CHANG B, et al. Separation and preparation of walnut protein and antioxidant properties of its enzymatic hydrolysate[J]. Modern Food Science and Technology,2019,35(3):118−124.
    [28]
    MAO X Y, FEI Y, et al. Chemical composition, molecular weight distribution, secondary structure and effect of NaCl on functional properties of walnut (Juglans regia L.) protein isolates and concentrates[J]. Journal of Food Science and Technology,2012,51(8):1473−82.
    [29]
    XUE Y, SUN Q, MA Z F, et al. Preliminary study on protein isolation process of walnut dregs by single factor experiments and response surface method[J]. Journal of Food Measurement and Characterization,2021,15(2):1310−1316. doi: 10.1007/s11694-020-00715-7
    [30]
    HAN H, CHEUNG I, PAN S, et al. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin[J]. Food Hydrocolloids,2015,45(Mar.):102−110.
    [31]
    SUN Q, MA Z F, ZHANG H, et al. Structural characteristics and functional properties of walnut glutelin as hydrolyzed: Effect of enzymatic modification[J]. International Journal of Food Properties,2019,22(1):265−279. doi: 10.1080/10942912.2019.1579738
    [32]
    马开创. 核桃蛋白和多肽制备及功能性研究[D]. 武汉: 武汉轻工大学, 2020.

    MA K C. Preparation and functional study of walnut protein and peptide[D]. WuHan: WuHan Polytechnic University, 2020.
    [33]
    YAN C, ZHOU Z. Solubility and emulsifying properties of phosphorylated walnut protein isolate extracted by sodium trimetaphosphate[J]. LWT- Food Science and Technology,2021,143(1−2):111117.
    [34]
    VENKATACHALAM M, ROUX K H, SATHE S K. Biochemical characterization of soluble proteins in pecan [Carya illinoinensis (Wangenh.) K. Koch][J]. Journal of agricultural and food chemistry,2008,56(17):8103−8110. doi: 10.1021/jf801268k
    [35]
    JING S Q. Optimization of the preparation of walnut protein with ultrasonic-assisted extraction method[J]. Food Science and Technology,2012,37(2):251−255.
    [36]
    QU W, FAN W, FENG Y, et al. Preparation of heat-sensitivity proteins from walnut meal by sweep frequency ultrasound-assisted alkali extraction[J]. Journal of Food Quality,2021,2021:1−12.
    [37]
    姜莉. 核桃渣制备核桃蛋白和多肽的研究[D]. 杨凌: 西北农林科技大学, 2007.

    JANG L. Study on walnut protein and polypeptide prepared from walnut cake[D]. Yangling: Northwest A&F University, 2007.
    [38]
    曾国强. 米渣蛋白的分离提取、改性及功能特性研究[D]. 武汉: 武汉轻工大学, 2016.

    ZENG G Q. Research on separation, modified and features of rice residue protein[D]. Wuhan: Wuhan Polytechnic University, 2016.
    [39]
    邓欣伦. 核桃蛋白—多糖界面相互作用及其对乳浊液性质影响的研究[D]. 广州: 华南理工大学, 2016.

    DENG X L. Walnut protein—polysaccharide interactions at the oil/water interface: Effect on the properties of emulsion [D]. Guangzhou: South China University of Technology, 2016.
    [40]
    GAO L L, LI Y Q, Wang Z S, et al. Physicochemical characteristics and functionality of tree peony (Paeonia suffruticosa Andr.) seed protein[J]. Food Chemistry,2018,240:980−988. doi: 10.1016/j.foodchem.2017.07.124
    [41]
    MUNDI S, ALUKO R E. Physicochemical and functional properties of kidney bean albumin and globulin protein fractions[J]. Food Research International,2012,48(1):299−306. doi: 10.1016/j.foodres.2012.04.006
    [42]
    TANG S, YU J, LU L, et al. Interfacial and enhanced emulsifying behavior of phosphorylated ovalbumin[J]. International Journal of Biological Macromolecules,2019,131:293−300. doi: 10.1016/j.ijbiomac.2019.03.076
    [43]
    LI M, MA Y, CUI J. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin[J]. LWT-Food Science and Technology,2014,59(1):49−58. doi: 10.1016/j.lwt.2014.04.054
    [44]
    HU Z, QIU L, SUN Y, et al. Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate[J]. Food Hydrocolloids,2019,96:288−299. doi: 10.1016/j.foodhyd.2019.05.037
  • Cited by

    Periodical cited type(15)

    1. 黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 . 本站查看
    2. 张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
    3. 朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
    4. 薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
    5. 吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
    6. 缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
    7. 孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
    8. 朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
    9. 黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 . 本站查看
    10. 宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 . 本站查看
    11. 刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
    12. 张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
    13. 龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
    14. 王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
    15. 刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (373) PDF downloads (20) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return