LI Na, FU Junjie, LIU Jun, et al. Screening of A Neutral Protease-producing Strain and Optimization of Fermentation Conditions[J]. Science and Technology of Food Industry, 2023, 44(1): 189−199. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040055.
Citation: LI Na, FU Junjie, LIU Jun, et al. Screening of A Neutral Protease-producing Strain and Optimization of Fermentation Conditions[J]. Science and Technology of Food Industry, 2023, 44(1): 189−199. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040055.

Screening of A Neutral Protease-producing Strain and Optimization of Fermentation Conditions

More Information
  • Received Date: April 07, 2022
  • Available Online: November 05, 2022
  • Currently, low enzyme activity and high raw material cost seriously restricted the development of the industrial production of protease. In this study, transparent circle and shaking flask fermentation methods were used to screen out a neutral protease-producing strain, which was identified as Bacillus velezensis by morphological observation, physiological and biochemical results and 16S rDNA analysis, and named ppr3. The medium composition and fermentation conditions for this strain to produce neutral protease were optimized by one-at-a-time strategy and response surface methodology. The results showed that: The fermentation temperature was 33 ℃, inoculation amount was 8.5% (v/v), initial pH was 5.7, lactose 5.55 g/L, rapeseed 31.89 g/L, yeast extract 7.09 g/L, tween-80 0.03%, MgSO4 0.04%, K2HPO4 0.04%, the protease activity was 500 U/mL. Compared with before optimization, it increased by 132%. The addition of rapeseed meal as nitrogen source to the medium significantly reduced the fermentation cost and provided a new way for the reuse of agricultural and sideline products, which had major implications in protease industrial fermentation.
  • [1]
    JAHAN-MIHAN A, LUHOVYY B L, KHOURY D E, et al. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract[J]. Nutrients,2011,3(5):574−603. doi: 10.3390/nu3050574
    [2]
    MATTHEWS D M, CRAMPTON R F, LIS M T. Intestinal absorption of peptides[J]. Biochemical Society Transactions,1983,292(7568):639−640.
    [3]
    CHEN P, OU Y, LI S. Effect of different protein sources on the concentrations of small peptides in the rumen of sheep[J]. Archives of Animal Nutrition,2007,61(4):301−307. doi: 10.1080/17450390701432696
    [4]
    KUMAR M S. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status[J]. Frontiers in Nutrition,2019,6:11. doi: 10.3389/fnut.2019.00011
    [5]
    HAMEDY R J, FITZGERALD R J. Bioactive peptides from marine processing waste and shellfish: A review[J]. Journal of Functional Foods,2012,4(1):6−24. doi: 10.1016/j.jff.2011.09.001
    [6]
    RUNNI M, RUNU C, DUTTA A. Role of fermentation in improving nutritional quality of soybean meal: A review[J]. Asian-Australasian Journal of Animal Sciences,2016,29(11):1523−1529.
    [7]
    CASSONE M, JR L O. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics[J]. Expert Rev Anti Infect Ther,2010,8(6):703−716. doi: 10.1586/eri.10.38
    [8]
    ZHANG J N, ZHAO M M, SU G W, et al. Identification and taste characteristics of novel umami and umami-enhancing peptides separated from peanut protein isolate hydrolysate by consecutive chromatography and UPLC-ESI-QTOF-MS/MS[J]. Food Chemistry,2019,25(278):674−682.
    [9]
    王芳, 贾万利, 张浩男, 等. 混合菌发酵对豆粕品质的影响[J]. 甘肃农业大学学报,2017,52(4):45−51. [WANG F, JIA W L, ZHANG H N, et al. Effect of mixed bacteria fermentation on quality of soybean meal[J]. Journal of Gansu Agricultural University,2017,52(4):45−51. doi: 10.13432/j.cnki.jgsau.2017.04.007
    [10]
    毛银, 陆春波, 李国辉, 等. 菌酶协同发酵豆粕工艺的优化[J]. 食品与发酵工业,2019,45(14):108−114. [MAO Y, LU C B, LI G H, et al. Optimized fermentation process of soybean meal by bacteria and enzymes[J]. Food and Fermentation Industries,2019,45(14):108−114. doi: 10.13995/j.cnki.11-1802/ts.019892
    [11]
    汤恒, 张娟, 堵国成. 高效降解牛奶过敏原蛋白酶菌种筛选及其重组植物过氧化氢酶的功能验证[J]. 食品与生物技术学报,2021,40(3):28−34. [TANG H, ZHANG J, DU G C. Study on milk allergen protease screening and its recombinant vegetative catalase function verificition[J]. Journal of Food Science and Bictechnology,2021,40(3):28−34. doi: 10.3969/j.issn.1673-1689.2021.03.004
    [12]
    WANG J, XU A, WAN Y, et al. Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001[J]. Applied Biochemistry & Biotechnology,2013,170(8):2021−2033.
    [13]
    唐霄, 孙杨赢, 江雪婷, 等. 不同蛋白酶制备鹅肉呈味肽的对比分析[J]. 食品科学,2019,40(22):141−146. [TANG X, SUN Y Y, JIANG X T, et al. Comparative analysis of flavor peptides prepared by enzymatic hydrolysis of goose meat with different proteases[J]. Food Science,2019,40(22):141−146. doi: 10.7506/spkx1002-6630-20181023-272
    [14]
    王亮亮, 李方方, 姜锡瑞. 我国蛋白酶的产业近况与展望[J]. 中国食品添加剂,2021,32(8):141−150. [WANG L L, LI F F, JIANG X R. Current situation and prospect of protease industry in China[J]. China Food Additives,2021,32(8):141−150. doi: 10.19804/j.issn1006-2513.2021.08.020
    [15]
    吕凯波, 朱文婷. 双酶分步酶解红花籽粕制备抗氧化肽[J]. 食品工业,2020,41(10):24−26. [LÜ K B, ZHU W T. The process of safflower seed meal and antioxidant activity by double enzymatic hydrolysis[J]. The Food Industry,2020,41(10):24−26.
    [16]
    王玉敏, 齐红丽. 酶解大豆粕蛋白制备大豆低分子肽的研究[J]. 化学与生物工程,2010,27(4):64−66. [WANG Y M, QI H L. Study on preparation of low molecular weight peptides by enzymolysis of soybean protein[J]. Chemistry Bioengineering,2010,27(4):64−66. doi: 10.3969/j.issn.1672-5425.2010.04.018
    [17]
    王晓云. 高产蛋白酶枯草芽孢杆菌的筛选与诱变选育研究[D]. 泰安: 山东农业大学, 2015

    WANG X Y. Screening and mutation breeding of Bacillus subtilis with high protease production[D]. Taian: Shandong Agricultural University, 2015.
    [18]
    周晶. 产低温蛋白酶动性球菌的筛选及其在低盐鱼露发酵中的应用[D]. 镇江: 江苏大学, 2020

    ZHOU J. Screening of planococcus bacteria low-temperature proteases and its application in low-salt fish sauce fermentation[D]. Zhenjiang: Jiangsu University, 2020.
    [19]
    殷方荣. 贝莱斯芽孢杆菌角蛋白酶的基因克隆、表达、酶学性质及应用[D]. 无锡: 江南大学, 2021

    YIN F R. Gene cloning, expression, characteristics and application of keratinase from Bacillus velezensis[D]. Wuxi: Jiangnan University, 2021.
    [20]
    KHALID F, KHALID A, FU Y, et al. Potential of Bacillus velezensis as a probiotic in animal feed: A review[J]. The Journal of Microbiology,2021,59(7):627−633. doi: 10.1007/s12275-021-1161-1
    [21]
    IBRAHIM, ABDELNASSER S, et al. Optimization of media and cultivation conditions for alkaline protease production by Alkaliphilic bacillus halodurans[J]. Current Research in Bacteriology,2009,4(7):251−259.
    [22]
    朱祥杰, 王震, 苑志欣, 等. 海洋芽孢杆菌N11-8产蛋白酶的发酵条件优化[J]. 渔业科学进展,2018,39(6):155−163. [ZHU X J, WANG Z, YUAN Z X, et al. Optimization of fermentation conditions of Bacillus sp N11-8 on the production of protease PBN11-8[J]. Progress in Fishery Sciences,2018,39(6):155−163.
    [23]
    王永红, 李小斌, 徐磊, 等. 产蛋白酶菌株的筛选、鉴定及水解菜粕蛋白能力[J]. 生物资源,2018,40(2):135−140. [WANG Y H, LI X B, XU L, et al. Screening and identification of protease producing strains and their ability of hydrolysis of rapeseed protein[J]. Biological Resources,2018,40(2):135−140.
    [24]
    杜静, 钮琰星, 周琦, 等. 固相微萃取条件优化及发酵菜粕风味物质分析[J]. 中国粮油学报,2017,32(7):114−120. [DU J, NIU Y X, ZHOU Q, et al. Optimization of solid phase microextraction (SPME) and analysis of volatile compounds in fermented rapeseed meal[J]. Chinese Journal of Cereals and Oils,2017,32(7):114−120. doi: 10.3969/j.issn.1003-0174.2017.07.019
    [25]
    马淑惠, 刘东彦. K+、Na+、Ca2+、Mg2+在生物过程中的作用[J]. 固原师专学报,2003(3):85−87. [MANG S H, LIU D Y. The roles of K+, Na+, Ca2+, Mg2+ in biological processes[J]. Journal of Guyuan Teachers College,2003(3):85−87.
    [26]
    ANANDHARAJ M, SIVASANKARI B, SIDDHARTHAN N, et al. Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste[J]. Applied Biochemistry & Biotechnology,2016,178(8):1666−1686.
    [27]
    DEIVE F J, CARVALHO E, PASTRANA L, et al. Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27[J]. Bioresource Technology,2009,100(14):3630−3637. doi: 10.1016/j.biortech.2009.02.053
    [28]
    SILVA W, MITIDIERI S, SCHRANK A, et al. Production and extraction of an extracellular lipase from the entomopathogenic fungus metarhiziumanisopliae[J]. Process Biochemistry,2005,40(1):321−326. doi: 10.1016/j.procbio.2004.01.005
    [29]
    JACBO F F, STRIEGEL L, RVCHLIK M, et al. Spent yeast from brewing processes: A biodiverse starting material for yeast extract production[J]. Fermentation,2019,5(2):51. doi: 10.3390/fermentation5020051
    [30]
    贾天梅. 产耐热型碱性蛋白酶菌株筛选、发酵条件优化及其酶学性质研究[D]. 杭州: 浙江工商大学, 2018

    JIA T M. Study on screening of thermostabilable alkaline protease strain, optimization of fermentation condition and its emzymatic properties[D]. Hangzhou: Zhejiang Gongshang University, 2018.
    [31]
    LIU S, FANG Y, LYU M, et al. Optimization of the production of organic solvent-stable protease by Bacillus sphaericus DS11 with response surface methodology[J]. Bioresource Technology,2010,101(20):7924−7929. doi: 10.1016/j.biortech.2010.05.057
    [32]
    LI X Q, CHAI X Q, LIU D Y, et al. Effects of temperature and feed processing on protease activity and dietary protease on growths of white shrimp, Litopenaeus vannamei, and tilapia, Oreochromis niloticus×O.aureus[J]. Aquaculture Nutrition,2016,22(6):1283−1292. doi: 10.1111/anu.12330
    [33]
    陈偿, 丁雄祺, 谢媚, 等. 一株具有高效降解水产养殖水体中饲料淀粉功能的贝莱斯芽孢杆菌D1及其应用: CN111235065A[P]. 2020-06-05

    CHEN C, DING X Q, XIE M, et al. A Bacillus cereus D1 with efficient degradation of feed starch in aquaculture water and its application: CN111235065A[P]. 2020-06-05.
    [34]
    卢超, 陈景鲜, 王国霞, 等. 枯草芽孢杆菌L07产中性蛋白酶发酵条件优化[J]. 食品与发酵工业,2020,46(16):148−153. [LU C, CHEN J X, WANG G X. et al. Optimization of fermentation conditions for the production of neutral protease by Bacillus subtilis L07[J]. Food and Fermentation Industries,2020,46(16):148−153. doi: 10.13995/j.cnki.11-1802/ts.023566
    [35]
    许曌昕, 曾辉, 曾德勇, 等. 响应面法优化解淀粉芽孢杆菌产中性蛋白酶发酵条件[J]. 中国酿造,2017,36(4):78−82. [XU Z X, ZENG H, ZENG D Y. et al. Optimization of fermentation conditions for neutral protease-production Bacillus amyloliquefaciens by response surface methodology[J]. China Brewing,2017,36(4):78−82. doi: 10.11882/j.issn.0254-5071.2017.04.017
    [36]
    宋立立, 张泽生. 枯草芽孢杆菌产中性蛋白酶发酵条件的优化[J]. 饲料研究,2020,43(4):66−70. [SONG L L, ZHANG Z S. Optimization of fermentation conditions for the production of neutral protease by Bacillus subtilis[J]. Feed Research,2020,43(4):66−70. doi: 10.13557/j.cnki.issn1002-2813.2020.04.018
    [37]
    郭艳霞, 贾丽艳, 畅盼盼, 等. 响应面法优化贝莱斯芽孢杆菌YB19产中性蛋白酶发酵条件[J]. 中国调味品,2021,46(4):16−20, 37. [GUO Y X, JIA L Y, CHANG P P, et al. Optimization of fermentation conditions for neutral protease produced by Bacillus cereus YB19 by response surface methodology[J]. China Condiment,2021,46(4):16−20, 37. doi: 10.3969/j.issn.1000-9973.2021.04.004
  • Cited by

    Periodical cited type(5)

    1. 孙兆敏,黄水木,阎光宇,李颖,刘萌,余蕾. 食品中丙烯酰胺的来源、毒性及减控措施研究进展. 福建轻纺. 2023(07): 18-21+31 .
    2. 何名芳,涂家涛. 焙烤食品添加剂的使用及发展探讨. 食品安全导刊. 2022(03): 139-141 .
    3. 周媛,吴岳,许蕊,闫瑞霞,张娟,张中兴. 各种添加物对食品中丙烯酰胺的影响. 食品工业. 2021(07): 195-198 .
    4. 金山,孙小凡. 食品中丙烯酰胺的形成、检测及其抑制和管理研究进展. 食品安全质量检测学报. 2021(15): 5915-5922 .
    5. 刘旖旎,刘芳,王德宝,孙芝兰,吴海虹. 纳米抗菌纤维的静电纺丝制备技术及其抗菌活性研究进展. 中国食品学报. 2021(12): 358-368 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (259) PDF downloads (21) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return