PENG Bin, LI Jinlin, ZHONG Bizhen, et al. Research Progress on the Mechanisms of Decreasing Catalytic Activity of Lipase in the Production of Structured Lipids Synthesized by Enzymatic Method[J]. Science and Technology of Food Industry, 2023, 44(3): 489−498. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040035.
Citation: PENG Bin, LI Jinlin, ZHONG Bizhen, et al. Research Progress on the Mechanisms of Decreasing Catalytic Activity of Lipase in the Production of Structured Lipids Synthesized by Enzymatic Method[J]. Science and Technology of Food Industry, 2023, 44(3): 489−498. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040035.

Research Progress on the Mechanisms of Decreasing Catalytic Activity of Lipase in the Production of Structured Lipids Synthesized by Enzymatic Method

More Information
  • Received Date: April 06, 2022
  • Available Online: December 03, 2022
  • Structured lipids are a new class of lipids recombined by combining fatty acids with special physiological functions at specific positions on the triglyceride backbone. Enzymatic catalyzed synthesis of structured lipids has attracted attention due to its mild reaction conditions, low energy consumption, simple separation and purification process, and the ability to synthesize functional fatty acids at specific acyl positions. However, with the increase of use times of lipases in industry, the catalytic activity of lipase decreases significantly, resulting in a decrease in the production of target structural lipids. This paper reviews the structure change, activity change and decreasing catalytic activity mechanisms of lipase-catalyzed synthesis of structured lipids in China and outside China in recent years. It found that the decrease of enzyme activity is mainly due to the destruction of the catalytic active center by strong or weak intermolecular interaction. This study provides a reference for solving the technical bottleneck of reducing lipase activity in the enzymatic synthesis of structured lipids.
  • [1]
    马敏, 邱斌, 孙琪, 等. 中长链结构脂质MLCT的研究进展[J]. 食品工业科技,2021,42(5):322−327. [MA M, QIU B, SUN Q, et al. Research progress of medium and long chain structured lipids MLCT[J]. Science and Technology of Food Industry,2021,42(5):322−327. doi: 10.13386/j.issn1002-0306.2020040207
    [2]
    李亚, 时杰, 黄凤洪. 酶催化法制备新型结构脂质研究进展[J]. 生物产业技术,2019(4):42−47. [LI Y, SHI J, HUANG F H. Advances in the preparation of novel structural lipids by enzymatic catalysis[J]. Biotechnology & Business,2019(4):42−47.
    [3]
    李君, 崔怀田, 刘瑞琦, 等. 脂肪替代物在低脂人造黄油中的应用研究进展[J]. 中国粮油学报,2021(6):173−180. [LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association,2021(6):173−180.
    [4]
    唐立伟, 周昱婧, 周芷寒, 等. 脂肪替代物在奶酪中的应用研究进展[J]. 食品安全导刊,2020(9):168−171. [TANG L W, ZHOU Y J, ZHOU Z H. et al. Research progress on the application of fat substitutes in cheese[J]. China Food Safety Magazine,2020(9):168−171. doi: 10.16043/j.cnki.cfs.2020.09.130
    [5]
    SPERANZA P, MACEDO G A. Lipase-mediated production of specific lipids with improved biological and physicochemical properties[J]. Process Biochemistry,2012,47(12):1699−1706. doi: 10.1016/j.procbio.2012.07.006
    [6]
    FERNANDEZ-LAFUENTE R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B Enzymatic,2010,62(3):197−212.
    [7]
    何川. 酶法酯交换与化学酯交换[J]. 粮食与油脂,2003,5(5):24−25. [HE C. Enzymatic and chemical transesterification[J]. Grain and Oil,2003,5(5):24−25. doi: 10.3969/j.issn.1008-9578.2003.05.008
    [8]
    曹茜, 王丹, 袁永俊. 脂肪酶位置选择性及其应用在功能性结构甘油三酯合成中的研究进展[J]. 食品与发酵工业,2020,46(11):295−301. [CAO X, WANG D, YUAN Y J. Advances in lipase regioselectivity and its applications in synthesis of functional structured triacylglycerols[J]. Food and Fermentation Industries,2020,46(11):295−301. doi: 10.13995/j.cnki.11-1802/ts.023932
    [9]
    NOOR LIDA H M D, SUNDRAIN K, SIEW W L, et al. TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein blends before and after chemical interesterification[J]. JAOCS,2002,79(11):1137−1144. doi: 10.1007/s11746-002-0617-0
    [10]
    LOPEZ-HERNANDEZ A, GARCIA H S, HILL C G. Lipase-catalyzed transesterification of medium-chain triacylglycerols and a fully hydrogenated soybean oil[J]. Journal of Food Science,2005,70(6):c365−c372.
    [11]
    SHUANG D, JIANG K Y, YAN Y J. Optimization of lipase-catalyzed acidolysis of soybean oil to produce structured lipids[J]. Journal of Food Biochemistry,2009,33(3):442−452. doi: 10.1111/j.1745-4514.2009.00227.x
    [12]
    季圣阳, 鞠兴荣, 徐斐然, 等. 功能性油脂-结构脂质酶法合成的研究进展[J]. 粮食科技与经济,2018,43(10):4. [JI S Y, JU X R, XU F R. Research progress on enzymatic synthesis functional oils-structured lipids[J]. Grain Science and Technology and Economy,2018,43(10):4. doi: 10.16465/j.gste.cn431252ts.20181020
    [13]
    李成, 王胜杰, 季敏, 等. 脂肪酶在催化酯交换过程中的稳定性[J]. 上海大学学报(自然科学版),2017,23(4):623−627. [LI C, WANG S J, JI M, et al. Stability of lipase in the process of catalytic interesterification reaction[J]. Journal of Shanghai University (Natural Science),2017,23(4):623−627.
    [14]
    KHODADADI M, KERMASHA S. Modeling lipase-catalyzed interesterification of flaxseed oil and tricaprylin for the synthesis of structured lipids[J]. Journal of Molecular Catalysis B: Enzymatic,2014,102:33−40. doi: 10.1016/j.molcatb.2014.01.011
    [15]
    TURAN D, YESILCUBUK N S, AKOH C C. Enrichment of sn-2 position of hazelnut oil with palmitic acid: Optimization by response surface methodology[J]. LWT-Food Science and Technology,2013,50(2):766−772. doi: 10.1016/j.lwt.2012.07.009
    [16]
    LIU S L, DONG X Y, WEI F, et al. Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1, 3-dioleoyl-2-palmitoylglycerol content[J]. Ultrasonics Sonochemistry,2015,23:100−108. doi: 10.1016/j.ultsonch.2014.10.015
    [17]
    ZHAO M L, TANG L, ZHU X M, et al. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM[J]. Journal of Agricultural and Food Chemistry,2013,61(6):1189−1195. doi: 10.1021/jf305086j
    [18]
    PALLA C A, CARRIN M E. Kinetics modeling of the acidolysis with immobilized Rhizomucor miehei lipases for production of structured lipids from sunflower oil[J]. Biochemical Engineering Journal,2014,90(15):184−194.
    [19]
    PACHECO C, CRAPISTE G H, CARRIN M E. Lipase-catalyzed acidolysis of sunflower oil: Kinetic behavior[J]. Journal of Food Engineering,2010,98(4):492−497. doi: 10.1016/j.jfoodeng.2010.01.032
    [20]
    郭诤, 张根旺. 脂肪酶的结构特征和化学修饰[J]. 中国油脂,2003,7:5−10. [GUO Z, ZHANG G W. Structural characteristics and chemical modification of lipase[J]. China Oils and Fats,2003,7:5−10. doi: 10.3321/j.issn:1003-7969.2003.03.001
    [21]
    JOSEPH B, RAMTEKE P W, THOMAS G. Cold active microbial lipases: Some hot issues and recent developments[J]. Biotechnology Advance,2008,26:457−470. doi: 10.1016/j.biotechadv.2008.05.003
    [22]
    KOKKINOU M, THEODOROU L G, PAPAMICHAEL E M. Aspects on the catalysis of lipase from porcine pancreas (type VI-s) in aqueous media: Development of ion-pairs[J]. Brazil Archive Biological Technology,2012,55:231−236. doi: 10.1590/S1516-89132012000200007
    [23]
    孟枭. 脂肪酶的结构修饰、分子识别机理解析及性能强化[D]. 杭州: 浙江大学, 2014

    MENG X. Study on stereo-recognition mechanism and performance enhancement of lipase by structure modification[D]. Hangzhou: Zhejiang University, 2014
    [24]
    PREIS K, HOLMBERGO H, WATZKE M E, et al. Lipase at interfaces: A review[J]. Advance Colloid Interface Science,2009,147:237−250.
    [25]
    VAN TILBEURGH H, EGLOFF M P, MARTINEZ C, et al. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography[J]. Nature,1993,362:814−820. doi: 10.1038/362814a0
    [26]
    GHANEM A. Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds[J]. Tetrahedron,2007,63(8):1721−1754. doi: 10.1016/j.tet.2006.09.110
    [27]
    ESCORCIA A M, DAZA M C, DOERR M. Computational study of the enantioselectivity of the O-acetylation of (R, S)-propranolol catalyzed by candida antarctica lipase B[J]. Journal of Molecular Catalysis B: Enzymatic,2014,108:21−31. doi: 10.1016/j.molcatb.2014.06.010
    [28]
    ŚWIDEREK K, PANETH P. Differences and similarities in binding of pyruvate and l-lactate in the active site of M4 and H4 isoforms of human lactate dehydrogenase[J]. Archives of Biochemistry and Biophysics,2011,505(1):33−41. doi: 10.1016/j.abb.2010.10.010
    [29]
    CHEN D Z, WANG Q L, ZHANG H H, et al. Theoretical mechanisms of the superoxide radical anion catalyzed by the copper-zinc superoxide dismutase[J]. Internatinal Journal of Quantum Chemistry,2010,110(7):1394−1401. doi: 10.1002/qua.22025
    [30]
    YANG C, WANG F, LAN D, et al. Effects of organic solvents on activity and conformation of recombinant Candida antarctica lipase A produced by Pichia pastoris[J]. Process Biochemistry,2012,47(3):533−537. doi: 10.1016/j.procbio.2011.11.017
    [31]
    SADAF A, GREWAL J, JAIN I, et al. Stability and structure of Penicillium chrysogenum lipase in the presence of organic solvents[J]. Preparative Biochemistry and Biotechnology,2018:1−6.
    [32]
    LI C, TAN T, ZHANG H, et al. Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents insight from molecular dynamics and quantum mechanics/simulations[J]. Journal of Biological Chemistry,2010,285(37):28434−28441. doi: 10.1074/jbc.M110.136200
    [33]
    DACHURI V, BOYINENI J, CHOI S, et al. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents[J]. Journal of Molecular Catalysis B: Enzymatic,2016,131:73−78. doi: 10.1016/j.molcatb.2016.06.003
    [34]
    JIANG Y, LI L, ZHANG H, et al. Lid closure mechanism of Yarrowia lipolytica lipase in methanol investigated by molecular dynamics simulation[J]. Journal of Chemical Information & Modeling,2014,54(7):2033−2041.
    [35]
    HAQUE N, PRABHU N P. Lid dynamics of porcine pancreatic lipase in non-aqueous solvents[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2016: S0304416516301350.
    [36]
    SECUNDO F, CARREA G, TARABIONO C, et al. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents[J]. Biotechnology & Bioengineering,2004,86(2):236−240.
    [37]
    LIU Y, CHEN D, YAN Y, et al. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents[J]. Bioresource Technology,2011,102(22):10414−10418. doi: 10.1016/j.biortech.2011.08.056
    [38]
    MAIANGWA J, ALI M S M, SALLEH A B, et al. Lid opening and conformational stability of T1 lipase is mediated by increasing chain length polar solvents[J]. PeerJ,2017,5:e3341. doi: 10.7717/peerj.3341
    [39]
    秦杰, 邹孝强, 金青哲, 等. 离子液体体系对脂肪酶性质和结构的影响研究进展[J]. 中国油脂,2017,42(1):26−30. [QIN J, ZOU X Q, JIN Q Z, et al. Advance in influence of ionic liquids system on properties and structure of lipase[J]. China Oils and Fats,2017,42(1):26−30. doi: 10.3969/j.issn.1003-7969.2017.01.007
    [40]
    LAU R M, SORGEDRAGER M J, CARREA G, et al. Dissolution of Candida antarctica lipase B in ionic liquids: Effects on structure and activity[J]. Green Chemistry,2004,6(9):483−487. doi: 10.1039/b405693k
    [41]
    DABIRMANESH B, DANESHJOU S, SEPAHI A A, et al. Effect of ionic liquids on the structure, stability and activity of two related α-amylases[J]. International Journal of Biological Macromolecules,2011,48(1):0−97.
    [42]
    ADAK S, DATTA S, BHATTACHARYA S, et al. Imidazolium based ionic liquid type surfactant improves activity and thermal stability of lipase of Rhizopus oryzae[J]. Journal of Molecular Catalysis B: Enzymatic,2015,119:12−17. doi: 10.1016/j.molcatb.2015.05.010
    [43]
    PAVLIDIS I V, GOURNIS D, PAPADOPOULOS G K, et al. Lipases in water-in-ionic liquid microemulsions: Structural and activity studies[J]. Journal of Molecular Catalysis B: Enzymatic,2009,60(1-2):50−56. doi: 10.1016/j.molcatb.2009.03.007
    [44]
    DE DIEGO T, LOZANO P, GMOUH S, et al. Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids[J]. Biomacromolecules,2005,6(3):1457−1464. doi: 10.1021/bm049259q
    [45]
    QIN J, ZOU X Q, LV S T, et al. Influence of ionic liquids on lipase activity and stability in alcoholysis reactions[J]. Rsc Advances, 2016.
    [46]
    JIA R, HU Y, LIU L, et al. Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids[J]. Organic & Biomolecular Chemistry,2013,11:7192−7198.
    [47]
    NASCIMENTO P A M, PEREIRA J F B, DE CARVALHO S E V. Insights into the effect of imidazolium-based ionic liquids on chemical structure and hydrolytic activity of microbial lipase[J]. Bioprocess and Biosystems Engineering,2019,42(7):1235−1246.
    [48]
    WIMMER Z, ZAREVÚCKA M. A review on the effects of supercritical carbon dioxide on enzyme activity[J]. International Journal of Molecular Sciences,2010,11(1):233−253. doi: 10.3390/ijms11010233
    [49]
    张佳欣. 超临界二氧化碳下酶催化非专一性反应的研究[D]. 长春: 吉林大学, 2020

    ZHANG J X. Enzyme catalytic promiscuous reactions in supercritical carbon dioxide[D]. Changchun: Jilin University, 2020.
    [50]
    HABULIN M, KNEZ Z. Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane[J]. Journal of Chemical Technology & Biotechnology,2001,76(12):1260−1266.
    [51]
    CHEN D, PENG C, ZHANG H, et al. Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide[J]. Applied Biochemistry and Biotechnology,2013,169(7):2189−2201. doi: 10.1007/s12010-013-0132-3
    [52]
    AUCOIN M G, LEGGE R L. Effects of supercritical CO2 exposure and depressurization on immobilized lipase activity[J]. Biotechnology Letters,2001,23:1863−1870. doi: 10.1023/A:1012730105393
    [53]
    MELGOSA R, SANZ M T, GSOLAESA Á, et al. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2015,97:51−62. doi: 10.1016/j.supflu.2014.11.003
    [54]
    廖凯波, 曾虹燕, 邓欣, 等. 微水相超声波协同固定化脂肪酶催化酯交换过程优化[J]. 天然产物研究与开发,2009,21(5):871−874, 865. [LIAO K B, ZENG H Y, DENG X. et al. Optimized process of biodiesel on immobilized lipase catalyst assisted with ultrasonic radicalization in micro aqueous media[J]. Natural Product Research and Development,2009,21(5):871−874, 865. doi: 10.3969/j.issn.1001-6880.2009.05.035
    [55]
    JAMIR K, SESHAGIRIRAO K. Fluorescence quenching, structural and unfolding studies of a purified cysteine protease, ZCPG from Zingiber montanum rhizome[J]. International Journal of Biological Macromolecules,2018,106:277−283. doi: 10.1016/j.ijbiomac.2017.08.019
    [56]
    PFLUCK A C D, DE BARROS D P C, FONSECA L P, et al. Stability of lipases in miniemulsion systems: Correlation between secondary structure and activity[J]. Enzyme and Microbial Technology,2018,114:7−14. doi: 10.1016/j.enzmictec.2018.03.003
  • Cited by

    Periodical cited type(27)

    1. 戴明云,李斌,张朝阳,白富瑾,肖伟. 螺旋藻生长影响因素及功能特性应用研究进展. 现代农业科技. 2025(01): 161-165+179 .
    2. 李雪贤,刘洋,皮杰,桂雨婷,陆娟娟. 螺旋藻的主要成分及生理功能研究进展. 水产养殖. 2025(02): 37-42 .
    3. 韩佩,夏嵩,闫冰,姜钦亮,王一雯. 极大螺旋藻对四氧嘧啶性糖尿病小鼠的降血糖作用. 食品研究与开发. 2025(09): 44-51 .
    4. 吴朋徽,刘耀,张磊,肖芃颖,张玥. 微藻两阶段培养技术研究进展. 微生物学通报. 2024(01): 1-16 .
    5. 姜梦云,刘旭,衣然. 4种前处理方法-原子荧光光谱法测定螺旋藻中总砷含量. 食品安全导刊. 2024(03): 56-58 .
    6. 孙博,武晋海,李金凤,赵佳敏,刘金桃,黄凤丽. 螺旋藻口服液制备的工艺优化. 食品安全导刊. 2024(08): 127-131+135 .
    7. 唐魁延,龚艺松,田冬青,张晓宇,聂远洋,李波. 螺旋藻豆腐的研制开发. 河南科技学院学报(自然科学版). 2024(04): 15-27 .
    8. 薛宪辉,李思雨,郭睿,崔文凯,纪蓓. 螺旋藻风味酱的发酵工艺研究. 中国调味品. 2024(08): 69-73 .
    9. 王丽梅,西妮,穆文静,苏小军,张永明. 基于Cite Space对螺旋藻藻蓝蛋白的研究进展与热点分析. 食品与发酵工业. 2024(16): 313-323 .
    10. 宋盈萱,尹馨一,刘盈萱. 螺旋藻营养成分及生物活性研究进展. 食品安全导刊. 2024(27): 178-182 .
    11. 曾巧辉,余杏同,林妙銮. 螺旋藻蛋白-原花青素稳定亚麻籽油品质的研究. 佛山科学技术学院学报(自然科学版). 2024(05): 54-68 .
    12. 杨正磊,冯鑫,尹淑涛. 微藻资源概述及微藻多糖的生物活性研究进展. 中国食物与营养. 2024(09): 58-66 .
    13. 陈慧桢,吕莹果,陈洁,李雪琴. 螺旋藻方便面片制备工艺优化. 粮食与油脂. 2024(11): 135-142+162 .
    14. 柯善文,习向玉,陈翊可,张官鹏,宋富艳,韩栋敏,苏蓉,李晓雪,牛鑫,单华佳,梁倩倩. PDA培养基中添加不同有机氮源物质对黑木耳退化菌种复壮效果的影响. 山东农业科学. 2024(11): 121-126 .
    15. 袁泽文,高旭芳,田益玲. 响应面法优化乙酸锌对螺旋藻护色的研究. 粮食与油脂. 2023(04): 137-140 .
    16. 米顺利,竹烨,张艺,黄晓菊,蒋心怡,易湘茜. 螺旋藻复配代餐粉的研制. 保鲜与加工. 2023(07): 43-49 .
    17. 李平,吕莹果,李雪琴,陈洁. 螺旋藻粉对面团流变性质及面筋结构的影响. 食品科学. 2023(14): 63-71 .
    18. 王志忠,穆洁,巩东辉,郭彩凤,王志国,宝俊刚. 钝顶螺旋藻与五种常见食物营养成分对比分析. 食品与发酵科技. 2023(04): 111-115+121 .
    19. 郭旭,魏登枭,钟彩荣,兰英,何勇锦,陈必链. 正己烷与氯化钙介导法联产提取未破壁螺旋藻的藻蓝蛋白和油脂. 食品与发酵工业. 2023(17): 202-208 .
    20. 魏登,李美善,刘艳霞,金永燮,佟立爽. 精酿绿啤加工工艺优化及其挥发性风味鉴定分析. 中国食品添加剂. 2023(10): 217-225 .
    21. 魏登,刘艳霞,金永燮,佟立爽. 菠菜螺旋藻复合精酿小麦绿啤挥发性香气表征研究. 食品安全导刊. 2023(30): 88-91 .
    22. 吴慧. 螺旋藻曲奇饼干制作工艺的研究. 食品安全导刊. 2022(04): 128-131+135 .
    23. 付雨,姜雨,王进博,张铂瑾,宋宸,孙明霞. 螺旋藻类保健食品批准情况及问题. 食品与机械. 2022(08): 1-6+13 .
    24. 李青卓,张楠,梅兴国,吴基良. 新鲜螺旋藻中β-胡萝卜素提取与测定. 湖北科技学院学报(医学版). 2022(04): 287-291 .
    25. 刘璐璐,陈玟璇,刘小慧,李世乐,许志浩,陈洪彬,郑宗平,王宝贝. 雨生红球藻对戚风蛋糕品质的影响及其虾青素稳定性. 食品工业科技. 2022(19): 76-83 . 本站查看
    26. 佟立爽,王晏驰,周娜,李美善,魏登. 不同温度条件下精酿绿啤二次发酵的挥发性风味差异分析. 中国食品添加剂. 2022(11): 9-17 .
    27. 张春艳,张震,仇钧仪,初宇轩,彭磊磊,罗鹏,陈成勋. 饲料添加复合氨基酸对锦鲤生长和生理生化指标的影响. 经济动物学报. 2022(04): 261-267 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (204) PDF downloads (20) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return