Citation: | ZHANG Lei, ZHANG Yujiao, WANG Yuning, et al. The Residue of Veterinary Medicine and Leanness-enhancing Agents in Meat and Advance in Detection Technology[J]. Science and Technology of Food Industry, 2023, 44(3): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040014. |
[1] |
SUMDLOF S F. Veterinary drugs residues: Veterinary drugs-general[J]. Encyclopedia of Food Safety,2014,3:35−38.
|
[2] |
CHICOINE A, ERDELY H, FATTORI V, et al. Assessment of veterinary drug residues in food: Considerations when dealing with sub-optimal data[J]. Regulatory Toxicology and Pharmacology,2020,118:104806. doi: 10.1016/j.yrtph.2020.104806
|
[3] |
PLEADIN J, VULIĆ A, PERŠI N, et al. Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose[J]. Meat Science,2010,86(3):733−737. doi: 10.1016/j.meatsci.2010.06.013
|
[4] |
RUBIO LOZANO M S, HERNÁNDEZ CHÁVEZ J F, RUÍZ LÓPEZ F A, et al. Horse meat sold as beef and consequent clenbuterol residues in the unregulated Mexican marketplace[J]. Food Control,2019,110:107028.
|
[5] |
KHALIL S, HAMED E, HASSANIN O. Residue withdrawal of florfenicol from the serum and edible tissues of broiler chickens[J]. The Journal of American Science,2012,8(12):514−524.
|
[6] |
张永新, 刘恬. 猪肉及其制品中兽药残留的分析与控[J]. 肉类工业,2020,475(11):36−39. [ZHANG Y X, LIU T. Analysis and control of veterinary drug residues in pork and its products[J]. Meat Industry,2020,475(11):36−39. doi: 10.3969/j.issn.1008-5467.2020.11.008
|
[7] |
谢希杨, 孙万成, 罗毅皓. 核酸适配体技术在畜产品兽残检测中的应用[J]. 食品研究与开发,2020,41(14):218−224. [XIE X Y, SUN W C, LUO Y H. Application of nucleic acid aptamer technology in detection of animal products[J]. Food Research and Development,2020,41(14):218−224. doi: 10.12161/j.issn.1005-6521.2020.14.034
|
[8] |
PINHEIRO I, JESUINO B, BARBOSA J, et al. Clenbuterol storage stability in the bovine urine and liver samples used for European official control in the azores islands (Portugal)[J]. Journal of Agricultural and Food Chemistry,2009,57(3):910−914. doi: 10.1021/jf802995e
|
[9] |
MORENO L, LANUSSE C. Veterinary drug residues in meat-related edible tissues. in book: New aspects of meat quality (Second edition)[M/OL]. Cambridge: Woodhead Publishing, 2022: 755-783 (2022-8-26) [2022-11-4].https://doi.org/10.1016/B978-0-323-85879-3.00007-6.
|
[10] |
HERRANZ S, MORENOBONDI M C, MARAZUELA M D. Development of a new sample pretreatment procedure based on pressurized liquid extraction for the determination of fluoroquinolone residues in table eggs[J]. Journal of Chromatography A,2007,1140(1):63−70.
|
[11] |
WANG M T, PENG B, ZHAO N, et al. Multiresidue analysis of tetracycline and β-receptor agonists in chicken by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry: Comparison with QuEChERS extraction method and ultrasound assisted extraction[J]. Journal of Food Composition and Analysis,2020,85:103339. doi: 10.1016/j.jfca.2019.103339
|
[12] |
CÁMARA M, GALLEGO-PICÓ A, GARCINUÑO R M, et al. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk[J]. Food Chemistry,2013,141(2):829−834. doi: 10.1016/j.foodchem.2013.02.131
|
[13] |
GRAHAM F, PARADIS L, BÉGIN P, et al. Risk of allergic reaction and sensitization to antibiotics in foods[J]. Annals of Allergy, Asthma & Immunology,2014,113(3):329−330.
|
[14] |
董高领, 牛志强, 刘利晓. 高效液相色谱法检测饲料中四环素类药物含量研究进展[J]. 畜牧与饲料科学,2019,40(1):33−35. [DONG G L, NIU Z Q, LIU L X. Research progress on detection methods of tetracyclines in feed stuff by high-performance liquid chromatography[J]. Animal Husbandry and Feed Science,2019,40(1):33−35. doi: 10.12160/j.issn.1672-5190.2019.01.008
|
[15] |
BALSALOBRE L, BLANCO A, ALARCÓN T. Beta‐lactams. In book: Antibiotic drug resistance[M/OL]. New York: John Wiley & Sons, 2019: 57-72 (2019-8-23) [2022-11-4]. https://doi.org/10.1002/9781119282549.ch3.
|
[16] |
ZHANG M Q, CHEN B, ZHANG J P, et al. Liver toxicity of macrolide antibiotics in zebrafish[J]. Toxicology,2020,441:152501. doi: 10.1016/j.tox.2020.152501
|
[17] |
CLOTHIER K, KINYON J, GRIFFITH R. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates[J]. Veterinary Microbiology,2011,156(1−2):178−182.
|
[18] |
KERGARAVAT S V, GAGNETEN A M, HERNANDEZ S R. Development of an electrochemical method for the detection of quinolones: Application to cladoceran ecotoxicity studies[J]. Microchemical Journal,2018,141:279−286. doi: 10.1016/j.microc.2018.05.039
|
[19] |
MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends in Biotechnology,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004
|
[20] |
LEBKOWSKA-WIERUSZEWSKA B, KOWALSKI C. Sulfachlorpyrazine residues depletion in turkey edible tissues[J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33(4):389−395.
|
[21] |
XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of The Total Environment,2020,753:141975.
|
[22] |
PÉREZ RODRÍGUEZ M, PELLERANO R, PEZZA L, et al. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination[J]. Talanta,2018,182:1−21. doi: 10.1016/j.talanta.2018.01.058
|
[23] |
谢会玲, 陈伟, 彭池方, 等. 动物源食品中β-内酰胺类抗生素多残留免疫分析方法研究进展[J]. 食品科学,2008(7):465−469. [XIE H L, CHEN W, PENG C F, et al. Research progress of multi-residues immunoassay of β-lactam antibiotic in food of animal origin[J]. Food Science,2008(7):465−469.
|
[24] |
LI X Z, MEHROTRA M, GHIMIRE S, et al. β-Lactam resistance and β-lactamases in bacteria of animal origin[J]. Veterinary Microbiology,2007,121(3-4):197−214. doi: 10.1016/j.vetmic.2007.01.015
|
[25] |
BAYNES R E, DEDONDER K, KISSELL L, et al. Health concerns and management of select veterinary drug residues[J]. Food and Chemical Toxicology,2016,88:112−122. doi: 10.1016/j.fct.2015.12.020
|
[26] |
ER B, ONURDAĞ F K, DEMIRHAN B, et al. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey[J]. Poultry Science,2013,92(8):2212−2215. doi: 10.3382/ps.2013-03072
|
[27] |
BEARDEN D T, RODVOLD K A. Penetration of macrolides into pulmonary sites of infection[J]. Infections in Medicine,1999,16(7):480−484.
|
[28] |
ZUCKERMAN J, QAMAR F, BONO B. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline)[J]. The Medical Clinics of North America,2011,95(4):761−791. doi: 10.1016/j.mcna.2011.03.012
|
[29] |
LIU Y H, YANG Q X, CHEN X T, et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips[J]. Talanta,2019,204:238−247. doi: 10.1016/j.talanta.2019.05.102
|
[30] |
程江闯, 胡启立, 吴海平. QuEChERS-超高效液相色谱-串联质谱法测定牛羊肉中36种瘦肉精残留量[J]. 食品安全质量检测学报,2020,11(23):200−210. [CHENG J C, HU Q L, WU H P. Determination of 36 clenbuterol residues in beef and mutton samples by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality Inspection,2020,11(23):200−210.
|
[31] |
曹金博, 王耀, 李燕虹, 等. 食品中“新型瘦肉精”的检测方法研究进展[J]. 安徽农业科学,2019,47(8):1−4. [CAO J B, WANG Y, LI Y H, et al. Research progress of new type lean meat powder detection methods in food[J]. Anhui Agricultural Science,2019,47(8):1−4. doi: 10.3969/j.issn.0517-6611.2019.08.001
|
[32] |
杨金众. 食品中瘦肉精残留危害及其常用检测方法探讨[J]. 食品安全导刊,2020,264(3):116. [YANG J Z. Discussion on the harm of clenbuterol residues in food and its common detection method[J]. Food Safety Guide.,2020,264(3):116. doi: 10.16043/j.cnki.cfs.2020.03.089
|
[33] |
STELLA R, BOVO D, MASTRORILLI E, et al. A novel tool to screen for treatments with clenbuterol in bovine: Identification of two hepatic markers by metabolomics Investigation[J]. Food Chemistry,2021,353(9):129366.
|
[34] |
SILLENCE M N. Technologies for the control of fat and lean deposition in livestock[J]. Veterinary Journal,2004,167(3):242−257. doi: 10.1016/j.tvjl.2003.10.020
|
[35] |
BARBOSA J, CRUZ C, MARTINS J, et al. Food poisoning by clenbuterol in Portugal[J]. Food Additives and Contaminants,2005,22:563−566. doi: 10.1080/02652030500135102
|
[36] |
ZHU C J, ZHAO G Y, DOU W C. Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,266:392−399. doi: 10.1016/j.snb.2018.03.085
|
[37] |
KUIPER H, NOORDAM M Y, DOOREN-FLIPSEN M M H, et al. Illegal use of β-adrenergic agonists: European community[J]. Journal of Animal Science,1998,76(1):195−207. doi: 10.2527/1998.761195x
|
[38] |
ZHANG W, WANG P L, SU X O. Current advancement in analysis of β-agonists[J]. TrAC Trends in Analytical Chemistry,2016,85:1−16.
|
[39] |
LI G L, ZHANG X L, ZHENG F P, et al. Emerging nanosensing technologies for the detection of β-agonists[J]. Food Chemistry,2020,332:127431. doi: 10.1016/j.foodchem.2020.127431
|
[40] |
LE RU E, BLACKIE E J, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: A comprehensive study[J]. Journal of Physical Chemistry C,2007,111(37):13794−13803. doi: 10.1021/jp0687908
|
[41] |
丁松园, 吴德印, 杨志林, 等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报,2008,29(12):2569−2581. [DING Y S, WU D Y, YANG Z L, et al. Some progresses in mechanistic studies on surface-enhanced Raman scattering[J]. Journal of College Chemistry,2008,29(12):2569−2581. doi: 10.3321/j.issn:0251-0790.2008.12.048
|
[42] |
DUAN N, QI S, GUO Y C, et al. Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding[J]. LWT,2020,134:110017. doi: 10.1016/j.lwt.2020.110017
|
[43] |
LI M H, WU H, WU Y P, et al. Heterostructured cube Au-Ag composites for rapid Raman detection of antibiotic ciprofloxacin: Rapid Raman detection of antibiotic ciprofloxacin[J]. Journal of Raman Spectroscopy,2017,48(4):525−529. doi: 10.1002/jrs.5071
|
[44] |
洪茜, 刘木华, 袁海超, 等. 基于表面增强拉曼光谱的鸭肉中螺旋霉素残留检测[J]. 发光学报,2015,36(12):1464−1468. [HONG Q, LIU M H, YUAN H C, et al. Detection of spiramycin residue in duck meat based on SERS[J]. Journal of luminescence,2015,36(12):1464−1468. doi: 10.3788/fgxb20153612.1464
|
[45] |
郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报,2017,8(1):169−176. [GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality Inspection.,2017,8(1):169−176. doi: 10.19812/j.cnki.jfsq11-5956/ts.2017.01.030
|
[46] |
ZHAO J H, LIU P, YUAN H C, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. Journal of Spectroscopy,2016:1−6.
|
[47] |
李耀. 基于表面增强拉曼光谱技术对鸭肉中喹诺酮类抗生素残留检测研究[D]. 南昌: 江西农业大学, 2016.
LI Y. Study on detection of quinolone antibiotics residues in duck meat based on SERS[D]. Nanchang: Jiangxi Agricultural University, 2016.
|
[48] |
ZHAO R, BI S Y, SHAO D, et al. Rapid determination of marbofloxacin by surface-enhanced Raman spectroscopy of silver nanoparticles modified by β-cyclodextrin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:118009. doi: 10.1016/j.saa.2019.118009
|
[49] |
XU Y, DU Y P, LI Q Q, et al. Ultrasensitive detection of enrofloxacin in chicken muscles by surface-enhanced Raman spectroscopy using amino-modified glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) powdered porous material[J]. Food Analytical Methods,2013,7:1219−1228.
|
[50] |
SHAO D, BI S Y, ZHAO R R, et al. Selective determination of dinitolmide and toltrazuril by surface-enhanced Raman spectroscopy (SERS) using AgNPs as substrate[J]. Sensors and Actuators B:Chemical,2020,307:127644. doi: 10.1016/j.snb.2019.127644
|
[51] |
CHEN H Z, LIU X K, CHEN A, et al. Parametric-scaling optimization of pretreatment methods for the determination of trace/quasi-trace elements based on near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,229:117959.
|
[52] |
王甜. 液相色谱-质谱联用技术在水产品兽药残留检测中的应用探究[J]. 检验检疫学刊,2020,30(3):99−101. [WANG T. The application of liquid chromatography-mass spectrometry in the detection of veterinary drug residue in aquatic products[J]. Journal of Inspection and Quarantine,2020,30(3):99−101.
|
[53] |
LOPES R, AUGUSTI D, SANTOS F, et al. Development and validation of an efficient and innovative method for the quantification of multiclass veterinary drugs in milk by using LC-MS/MS analysis[J]. Analytical Methods,2013,5:5121−5127. doi: 10.1039/c3ay40567b
|
[54] |
CEPURNIEKS G, RJABOVA J, ZACS D, et al. The development and validation of a rapid method for the determination of antimicrobial agent residues in milk and meat using ultra performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,102:184−192. doi: 10.1016/j.jpba.2014.09.005
|
[55] |
SONG X Q, ZHOU T, LIU Q Y, et al. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2016,208:169−176. doi: 10.1016/j.foodchem.2016.03.070
|
[56] |
SAITOSHIDA S, HAYASHI T, NEMOTO S, et al. Determination of total avilamycin residues as dichloroisoeverninic acid in porcine muscle, fat, and liver by LC-MS/MS[J]. Food Chemistry,2018,249:84−90. doi: 10.1016/j.foodchem.2018.01.003
|
[57] |
CHO S H, PARK J A, ZHENG W J, et al. Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Journal of Chromatography B,2017,1065:29−34.
|
[58] |
王亦琳, 尹晖, 叶妮, 等. 液相色谱-三重四极杆/线性离子阱复合质谱技术检测牛可食性组织中吡利霉素的残留[J]. 中国兽药杂志,2020,54(9):41−48. [WANG Y L, YIN H, YE N. The research of pirlimycin residues in cattle edible tissues by liquid chromatography-quadruple/Linear Ion Trap Mass Spectrometry[J]. Chinese Journal of Veterinary Medicine,2020,54(9):41−48.
|
[59] |
何秀玲, 张晓云, 白玉廷, 等. 液相色谱-串联质谱法测定羊肉中红霉素残留量[J]. 动物医学进展,2020,41(4):58−63. [HE X L, ZHANG X Y, BAI Y Y, et al. Determination of erythromycin residue in mutton by high performance liquid chromatography tandem mass spectrometry[J]. Advances in Animal Medicine,2020,41(4):58−63. doi: 10.16437/j.cnki.1007-5038.2020.04.012
|
[60] |
王爱卿, 马丽, 马爱平. 超高效液相色谱质谱联用法测定动物源性食品中瘦肉精方法的探讨[J]. 饲料广角,2012(13):35−36,38. [WANG A Q, MA L, MA A P. Determination of clenbuterol in animal derived foods by ultra high performance liquid chromatography mass spectrometry[J]. Feed China,2012(13):35−36,38.
|
[61] |
马俊美, 范素芳, 李强, 等. 超高效液相色谱-四极杆/飞行时间质谱检测猪肉和牛肉中30种食源性兴奋剂类药物残留[J]. 食品科学,2020:1−15. [MA J M, FAN S F, LI Q, et al. Determination of 30 foodborne stimulant drug residues in pork and beef using ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry[J]. Food Science,2020:1−15.
|
[62] |
贾玮, 徐曦, 石琳, 等. 液相色谱-高分辨质谱法同时测定羊肉中12种兽药残留[J]. 陕西科技大学学报,2020,38(3):54−59. [JIA W, XU X, SHI L, et al. Simultaneous determination of 12 veterinary drug residues in mutton by liquid chromatography-high resolution mass spectrometry[J]. Journal of Shaanxi University of Science and Technology,2020,38(3):54−59. doi: 10.3969/j.issn.1000-5811.2020.03.009
|
[63] |
赵晓丽, 谢书越, 陈炎, 等. 免疫分析技术在农产品农兽药残留检测中的应用[J]. 中国检验检测,2020,28(3):18−20. [ZHAO X L, XIE S Y, CHEN Y, et al. Application of immunoassay technology in the residue detection of pesticides and veterinary drugs of agricultural products[J]. China Inspection Body & Laboratory,2020,28(3):18−20. doi: 10.16428/j.cnki.cn10-1469/tb.2020.03.005
|
[64] |
DONG B L, ZHAO S J, LI H F, et al. Design, synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for the rapid detection of ractopamine in pork[J]. Food Chemistry,2019,271:9−17. doi: 10.1016/j.foodchem.2018.07.147
|
[65] |
LU X, ZHENG H, LI X Q, et al. Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay[J]. Food Chemistry,2012,130(4):1061−1065. doi: 10.1016/j.foodchem.2011.07.133
|
[66] |
WANG X M, LIUFU T, BELOGLAZOVA N, et al. Development of a competitive indirect enzyme-linked immunosorbent assay for screening phenylethanolamine a residues in pork samples[J]. Food Analytical Methods,2016,9(11):3099−3106. doi: 10.1007/s12161-016-0500-z
|
[67] |
NI T T, PENG D P, WANG Y X, et al. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk[J]. Food Chemistry,2019,286:234−240. doi: 10.1016/j.foodchem.2019.02.011
|
[68] |
LI Z B, CUI P L, LIU J, et al. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle[J]. Food Chemistry,2020,311:125966.1−125966.9.
|
[69] |
YU W B, ZHANG T T, MA M F, et al. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation[J]. Analytica Chimica Acta,2018,1027:130−136. doi: 10.1016/j.aca.2018.04.035
|
[70] |
JI H X, XIA C X, XU J J, et al. A highly sensitive immunoassay of pesticide and veterinary drug residues in food using by tandem conjugation of bi-functional mesoporous silica nanospheres[J]. The Analyst,2020,145(6):2226−2232. doi: 10.1039/C9AN02430A
|
[71] |
李研东, 韩雪, 吴雨洋, 等. 动物性食品中四环素类药物残留量子点荧光免疫技术研究[J]. 农产品质量与安全,2017(5):83−86,91. [LI Y D, HAN X, WU Y Y, et al. Study on fluorescence immunoassay of tetracycline residues in animal food by quantum dots[J]. Quality and Safety of Agricultural Products,2017(5):83−86,91.
|
1. |
赵斌,李娣娣,袁源,韦婷. 发酵型功能酒的现代研究进展. 酿酒. 2025(02): 43-49 .
![]() | |
2. |
陈乙源,洪嘉欣,黄河,王硕,武亚帅,赵东瑞,孙金沅,黄明泉,孙啸涛. 基于GC×GC-MS分析不同等级浓香型白酒的关键风味化合物. 中国酿造. 2025(03): 29-35 .
![]() | |
3. |
舒翔,邱奇琦. 果酒降酸专利技术分析. 安徽农学通报. 2024(04): 97-101 .
![]() | |
4. |
廖娟,李嘉宇,黄杰惠,陈博慧,杨涛. 耐低温酵母的分离鉴定及对低温酿造米酒品质的影响. 食品工业科技. 2024(07): 159-166 .
![]() | |
5. |
王爱灵,张梅,申娜娜,徐梦文,章骏伟,李瑞龙,兰伟. 黑果腺肋花楸果酒生产工艺研究进展. 滁州学院学报. 2024(02): 21-28 .
![]() |