ZHANG Lei, ZHANG Yujiao, WANG Yuning, et al. The Residue of Veterinary Medicine and Leanness-enhancing Agents in Meat and Advance in Detection Technology[J]. Science and Technology of Food Industry, 2023, 44(3): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040014.
Citation: ZHANG Lei, ZHANG Yujiao, WANG Yuning, et al. The Residue of Veterinary Medicine and Leanness-enhancing Agents in Meat and Advance in Detection Technology[J]. Science and Technology of Food Industry, 2023, 44(3): 481−488. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040014.

The Residue of Veterinary Medicine and Leanness-enhancing Agents in Meat and Advance in Detection Technology

More Information
  • Received Date: April 05, 2022
  • Available Online: November 25, 2022
  • The residue of veterinary medicine and brown meat essence in meat and meat products is an important factor that affects food safety. Therefore, there is of great significance to review the harmful residues in meat and meat products and develop rapid and accurate detection technologies, which will favor control of these harmful residues and guarantee the safety of meat. This review summarizes antibacterial drugs and leanness-enhancing agents that are commonly used in animal husbandry and analyzed the application range, advantages, and disadvantages, key influencing factors of surface-enhanced Raman spectroscopy, liquid chromatography-mass spectrometry, and immunoassay in the detection of antibiotics and leanness-enhancing agents. This review is anticipated to provide guidance for the safety control and veterinary medicine and leanness-enhancing agents residues detection of meat and meat products.
  • [1]
    SUMDLOF S F. Veterinary drugs residues: Veterinary drugs-general[J]. Encyclopedia of Food Safety,2014,3:35−38.
    [2]
    CHICOINE A, ERDELY H, FATTORI V, et al. Assessment of veterinary drug residues in food: Considerations when dealing with sub-optimal data[J]. Regulatory Toxicology and Pharmacology,2020,118:104806. doi: 10.1016/j.yrtph.2020.104806
    [3]
    PLEADIN J, VULIĆ A, PERŠI N, et al. Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose[J]. Meat Science,2010,86(3):733−737. doi: 10.1016/j.meatsci.2010.06.013
    [4]
    RUBIO LOZANO M S, HERNÁNDEZ CHÁVEZ J F, RUÍZ LÓPEZ F A, et al. Horse meat sold as beef and consequent clenbuterol residues in the unregulated Mexican marketplace[J]. Food Control,2019,110:107028.
    [5]
    KHALIL S, HAMED E, HASSANIN O. Residue withdrawal of florfenicol from the serum and edible tissues of broiler chickens[J]. The Journal of American Science,2012,8(12):514−524.
    [6]
    张永新, 刘恬. 猪肉及其制品中兽药残留的分析与控[J]. 肉类工业,2020,475(11):36−39. [ZHANG Y X, LIU T. Analysis and control of veterinary drug residues in pork and its products[J]. Meat Industry,2020,475(11):36−39. doi: 10.3969/j.issn.1008-5467.2020.11.008
    [7]
    谢希杨, 孙万成, 罗毅皓. 核酸适配体技术在畜产品兽残检测中的应用[J]. 食品研究与开发,2020,41(14):218−224. [XIE X Y, SUN W C, LUO Y H. Application of nucleic acid aptamer technology in detection of animal products[J]. Food Research and Development,2020,41(14):218−224. doi: 10.12161/j.issn.1005-6521.2020.14.034
    [8]
    PINHEIRO I, JESUINO B, BARBOSA J, et al. Clenbuterol storage stability in the bovine urine and liver samples used for European official control in the azores islands (Portugal)[J]. Journal of Agricultural and Food Chemistry,2009,57(3):910−914. doi: 10.1021/jf802995e
    [9]
    MORENO L, LANUSSE C. Veterinary drug residues in meat-related edible tissues. in book: New aspects of meat quality (Second edition)[M/OL]. Cambridge: Woodhead Publishing, 2022: 755-783 (2022-8-26) [2022-11-4].https://doi.org/10.1016/B978-0-323-85879-3.00007-6.
    [10]
    HERRANZ S, MORENOBONDI M C, MARAZUELA M D. Development of a new sample pretreatment procedure based on pressurized liquid extraction for the determination of fluoroquinolone residues in table eggs[J]. Journal of Chromatography A,2007,1140(1):63−70.
    [11]
    WANG M T, PENG B, ZHAO N, et al. Multiresidue analysis of tetracycline and β-receptor agonists in chicken by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry: Comparison with QuEChERS extraction method and ultrasound assisted extraction[J]. Journal of Food Composition and Analysis,2020,85:103339. doi: 10.1016/j.jfca.2019.103339
    [12]
    CÁMARA M, GALLEGO-PICÓ A, GARCINUÑO R M, et al. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk[J]. Food Chemistry,2013,141(2):829−834. doi: 10.1016/j.foodchem.2013.02.131
    [13]
    GRAHAM F, PARADIS L, BÉGIN P, et al. Risk of allergic reaction and sensitization to antibiotics in foods[J]. Annals of Allergy, Asthma & Immunology,2014,113(3):329−330.
    [14]
    董高领, 牛志强, 刘利晓. 高效液相色谱法检测饲料中四环素类药物含量研究进展[J]. 畜牧与饲料科学,2019,40(1):33−35. [DONG G L, NIU Z Q, LIU L X. Research progress on detection methods of tetracyclines in feed stuff by high-performance liquid chromatography[J]. Animal Husbandry and Feed Science,2019,40(1):33−35. doi: 10.12160/j.issn.1672-5190.2019.01.008
    [15]
    BALSALOBRE L, BLANCO A, ALARCÓN T. Beta‐lactams. In book: Antibiotic drug resistance[M/OL]. New York: John Wiley & Sons, 2019: 57-72 (2019-8-23) [2022-11-4]. https://doi.org/10.1002/9781119282549.ch3.
    [16]
    ZHANG M Q, CHEN B, ZHANG J P, et al. Liver toxicity of macrolide antibiotics in zebrafish[J]. Toxicology,2020,441:152501. doi: 10.1016/j.tox.2020.152501
    [17]
    CLOTHIER K, KINYON J, GRIFFITH R. Antimicrobial susceptibility patterns and sensitivity to tulathromycin in goat respiratory bacterial isolates[J]. Veterinary Microbiology,2011,156(1−2):178−182.
    [18]
    KERGARAVAT S V, GAGNETEN A M, HERNANDEZ S R. Development of an electrochemical method for the detection of quinolones: Application to cladoceran ecotoxicity studies[J]. Microchemical Journal,2018,141:279−286. doi: 10.1016/j.microc.2018.05.039
    [19]
    MAJDINASAB M, MITSUBAYASHI K, MARTY J L. Optical and electrochemical sensors and biosensors for the detection of quinolones[J]. Trends in Biotechnology,2019,37(8):898−915. doi: 10.1016/j.tibtech.2019.01.004
    [20]
    LEBKOWSKA-WIERUSZEWSKA B, KOWALSKI C. Sulfachlorpyrazine residues depletion in turkey edible tissues[J]. Journal of Veterinary Pharmacology and Therapeutics,2010,33(4):389−395.
    [21]
    XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of The Total Environment,2020,753:141975.
    [22]
    PÉREZ RODRÍGUEZ M, PELLERANO R, PEZZA L, et al. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination[J]. Talanta,2018,182:1−21. doi: 10.1016/j.talanta.2018.01.058
    [23]
    谢会玲, 陈伟, 彭池方, 等. 动物源食品中β-内酰胺类抗生素多残留免疫分析方法研究进展[J]. 食品科学,2008(7):465−469. [XIE H L, CHEN W, PENG C F, et al. Research progress of multi-residues immunoassay of β-lactam antibiotic in food of animal origin[J]. Food Science,2008(7):465−469.
    [24]
    LI X Z, MEHROTRA M, GHIMIRE S, et al. β-Lactam resistance and β-lactamases in bacteria of animal origin[J]. Veterinary Microbiology,2007,121(3-4):197−214. doi: 10.1016/j.vetmic.2007.01.015
    [25]
    BAYNES R E, DEDONDER K, KISSELL L, et al. Health concerns and management of select veterinary drug residues[J]. Food and Chemical Toxicology,2016,88:112−122. doi: 10.1016/j.fct.2015.12.020
    [26]
    ER B, ONURDAĞ F K, DEMIRHAN B, et al. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey[J]. Poultry Science,2013,92(8):2212−2215. doi: 10.3382/ps.2013-03072
    [27]
    BEARDEN D T, RODVOLD K A. Penetration of macrolides into pulmonary sites of infection[J]. Infections in Medicine,1999,16(7):480−484.
    [28]
    ZUCKERMAN J, QAMAR F, BONO B. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline)[J]. The Medical Clinics of North America,2011,95(4):761−791. doi: 10.1016/j.mcna.2011.03.012
    [29]
    LIU Y H, YANG Q X, CHEN X T, et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips[J]. Talanta,2019,204:238−247. doi: 10.1016/j.talanta.2019.05.102
    [30]
    程江闯, 胡启立, 吴海平. QuEChERS-超高效液相色谱-串联质谱法测定牛羊肉中36种瘦肉精残留量[J]. 食品安全质量检测学报,2020,11(23):200−210. [CHENG J C, HU Q L, WU H P. Determination of 36 clenbuterol residues in beef and mutton samples by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality Inspection,2020,11(23):200−210.
    [31]
    曹金博, 王耀, 李燕虹, 等. 食品中“新型瘦肉精”的检测方法研究进展[J]. 安徽农业科学,2019,47(8):1−4. [CAO J B, WANG Y, LI Y H, et al. Research progress of new type lean meat powder detection methods in food[J]. Anhui Agricultural Science,2019,47(8):1−4. doi: 10.3969/j.issn.0517-6611.2019.08.001
    [32]
    杨金众. 食品中瘦肉精残留危害及其常用检测方法探讨[J]. 食品安全导刊,2020,264(3):116. [YANG J Z. Discussion on the harm of clenbuterol residues in food and its common detection method[J]. Food Safety Guide.,2020,264(3):116. doi: 10.16043/j.cnki.cfs.2020.03.089
    [33]
    STELLA R, BOVO D, MASTRORILLI E, et al. A novel tool to screen for treatments with clenbuterol in bovine: Identification of two hepatic markers by metabolomics Investigation[J]. Food Chemistry,2021,353(9):129366.
    [34]
    SILLENCE M N. Technologies for the control of fat and lean deposition in livestock[J]. Veterinary Journal,2004,167(3):242−257. doi: 10.1016/j.tvjl.2003.10.020
    [35]
    BARBOSA J, CRUZ C, MARTINS J, et al. Food poisoning by clenbuterol in Portugal[J]. Food Additives and Contaminants,2005,22:563−566. doi: 10.1080/02652030500135102
    [36]
    ZHU C J, ZHAO G Y, DOU W C. Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,266:392−399. doi: 10.1016/j.snb.2018.03.085
    [37]
    KUIPER H, NOORDAM M Y, DOOREN-FLIPSEN M M H, et al. Illegal use of β-adrenergic agonists: European community[J]. Journal of Animal Science,1998,76(1):195−207. doi: 10.2527/1998.761195x
    [38]
    ZHANG W, WANG P L, SU X O. Current advancement in analysis of β-agonists[J]. TrAC Trends in Analytical Chemistry,2016,85:1−16.
    [39]
    LI G L, ZHANG X L, ZHENG F P, et al. Emerging nanosensing technologies for the detection of β-agonists[J]. Food Chemistry,2020,332:127431. doi: 10.1016/j.foodchem.2020.127431
    [40]
    LE RU E, BLACKIE E J, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: A comprehensive study[J]. Journal of Physical Chemistry C,2007,111(37):13794−13803. doi: 10.1021/jp0687908
    [41]
    丁松园, 吴德印, 杨志林, 等. 表面增强拉曼散射增强机理的部分研究进展[J]. 高等学校化学学报,2008,29(12):2569−2581. [DING Y S, WU D Y, YANG Z L, et al. Some progresses in mechanistic studies on surface-enhanced Raman scattering[J]. Journal of College Chemistry,2008,29(12):2569−2581. doi: 10.3321/j.issn:0251-0790.2008.12.048
    [42]
    DUAN N, QI S, GUO Y C, et al. Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding[J]. LWT,2020,134:110017. doi: 10.1016/j.lwt.2020.110017
    [43]
    LI M H, WU H, WU Y P, et al. Heterostructured cube Au-Ag composites for rapid Raman detection of antibiotic ciprofloxacin: Rapid Raman detection of antibiotic ciprofloxacin[J]. Journal of Raman Spectroscopy,2017,48(4):525−529. doi: 10.1002/jrs.5071
    [44]
    洪茜, 刘木华, 袁海超, 等. 基于表面增强拉曼光谱的鸭肉中螺旋霉素残留检测[J]. 发光学报,2015,36(12):1464−1468. [HONG Q, LIU M H, YUAN H C, et al. Detection of spiramycin residue in duck meat based on SERS[J]. Journal of luminescence,2015,36(12):1464−1468. doi: 10.3788/fgxb20153612.1464
    [45]
    郭红青, 刘木华, 袁海超, 等. 表面增强拉曼光谱技术快速检测鸭肉中的土霉素[J]. 食品安全质量检测学报,2017,8(1):169−176. [GUO H Q, LIU M H, YUAN H C, et al. Rapid detection of oxytetracycline in duck meat by surface-enhanced Raman spectroscopy[J]. Journal of Food Safety and Quality Inspection.,2017,8(1):169−176. doi: 10.19812/j.cnki.jfsq11-5956/ts.2017.01.030
    [46]
    ZHAO J H, LIU P, YUAN H C, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. Journal of Spectroscopy,2016:1−6.
    [47]
    李耀. 基于表面增强拉曼光谱技术对鸭肉中喹诺酮类抗生素残留检测研究[D]. 南昌: 江西农业大学, 2016.

    LI Y. Study on detection of quinolone antibiotics residues in duck meat based on SERS[D]. Nanchang: Jiangxi Agricultural University, 2016.
    [48]
    ZHAO R, BI S Y, SHAO D, et al. Rapid determination of marbofloxacin by surface-enhanced Raman spectroscopy of silver nanoparticles modified by β-cyclodextrin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229:118009. doi: 10.1016/j.saa.2019.118009
    [49]
    XU Y, DU Y P, LI Q Q, et al. Ultrasensitive detection of enrofloxacin in chicken muscles by surface-enhanced Raman spectroscopy using amino-modified glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) powdered porous material[J]. Food Analytical Methods,2013,7:1219−1228.
    [50]
    SHAO D, BI S Y, ZHAO R R, et al. Selective determination of dinitolmide and toltrazuril by surface-enhanced Raman spectroscopy (SERS) using AgNPs as substrate[J]. Sensors and Actuators B:Chemical,2020,307:127644. doi: 10.1016/j.snb.2019.127644
    [51]
    CHEN H Z, LIU X K, CHEN A, et al. Parametric-scaling optimization of pretreatment methods for the determination of trace/quasi-trace elements based on near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,229:117959.
    [52]
    王甜. 液相色谱-质谱联用技术在水产品兽药残留检测中的应用探究[J]. 检验检疫学刊,2020,30(3):99−101. [WANG T. The application of liquid chromatography-mass spectrometry in the detection of veterinary drug residue in aquatic products[J]. Journal of Inspection and Quarantine,2020,30(3):99−101.
    [53]
    LOPES R, AUGUSTI D, SANTOS F, et al. Development and validation of an efficient and innovative method for the quantification of multiclass veterinary drugs in milk by using LC-MS/MS analysis[J]. Analytical Methods,2013,5:5121−5127. doi: 10.1039/c3ay40567b
    [54]
    CEPURNIEKS G, RJABOVA J, ZACS D, et al. The development and validation of a rapid method for the determination of antimicrobial agent residues in milk and meat using ultra performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,102:184−192. doi: 10.1016/j.jpba.2014.09.005
    [55]
    SONG X Q, ZHOU T, LIU Q Y, et al. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry[J]. Food Chemistry,2016,208:169−176. doi: 10.1016/j.foodchem.2016.03.070
    [56]
    SAITOSHIDA S, HAYASHI T, NEMOTO S, et al. Determination of total avilamycin residues as dichloroisoeverninic acid in porcine muscle, fat, and liver by LC-MS/MS[J]. Food Chemistry,2018,249:84−90. doi: 10.1016/j.foodchem.2018.01.003
    [57]
    CHO S H, PARK J A, ZHENG W J, et al. Quantification of bupivacaine hydrochloride and isoflupredone acetate residues in porcine muscle, beef, milk, egg, shrimp, flatfish, and eel using a simplified extraction method coupled with liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Journal of Chromatography B,2017,1065:29−34.
    [58]
    王亦琳, 尹晖, 叶妮, 等. 液相色谱-三重四极杆/线性离子阱复合质谱技术检测牛可食性组织中吡利霉素的残留[J]. 中国兽药杂志,2020,54(9):41−48. [WANG Y L, YIN H, YE N. The research of pirlimycin residues in cattle edible tissues by liquid chromatography-quadruple/Linear Ion Trap Mass Spectrometry[J]. Chinese Journal of Veterinary Medicine,2020,54(9):41−48.
    [59]
    何秀玲, 张晓云, 白玉廷, 等. 液相色谱-串联质谱法测定羊肉中红霉素残留量[J]. 动物医学进展,2020,41(4):58−63. [HE X L, ZHANG X Y, BAI Y Y, et al. Determination of erythromycin residue in mutton by high performance liquid chromatography tandem mass spectrometry[J]. Advances in Animal Medicine,2020,41(4):58−63. doi: 10.16437/j.cnki.1007-5038.2020.04.012
    [60]
    王爱卿, 马丽, 马爱平. 超高效液相色谱质谱联用法测定动物源性食品中瘦肉精方法的探讨[J]. 饲料广角,2012(13):35−36,38. [WANG A Q, MA L, MA A P. Determination of clenbuterol in animal derived foods by ultra high performance liquid chromatography mass spectrometry[J]. Feed China,2012(13):35−36,38.
    [61]
    马俊美, 范素芳, 李强, 等. 超高效液相色谱-四极杆/飞行时间质谱检测猪肉和牛肉中30种食源性兴奋剂类药物残留[J]. 食品科学,2020:1−15. [MA J M, FAN S F, LI Q, et al. Determination of 30 foodborne stimulant drug residues in pork and beef using ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry[J]. Food Science,2020:1−15.
    [62]
    贾玮, 徐曦, 石琳, 等. 液相色谱-高分辨质谱法同时测定羊肉中12种兽药残留[J]. 陕西科技大学学报,2020,38(3):54−59. [JIA W, XU X, SHI L, et al. Simultaneous determination of 12 veterinary drug residues in mutton by liquid chromatography-high resolution mass spectrometry[J]. Journal of Shaanxi University of Science and Technology,2020,38(3):54−59. doi: 10.3969/j.issn.1000-5811.2020.03.009
    [63]
    赵晓丽, 谢书越, 陈炎, 等. 免疫分析技术在农产品农兽药残留检测中的应用[J]. 中国检验检测,2020,28(3):18−20. [ZHAO X L, XIE S Y, CHEN Y, et al. Application of immunoassay technology in the residue detection of pesticides and veterinary drugs of agricultural products[J]. China Inspection Body & Laboratory,2020,28(3):18−20. doi: 10.16428/j.cnki.cn10-1469/tb.2020.03.005
    [64]
    DONG B L, ZHAO S J, LI H F, et al. Design, synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for the rapid detection of ractopamine in pork[J]. Food Chemistry,2019,271:9−17. doi: 10.1016/j.foodchem.2018.07.147
    [65]
    LU X, ZHENG H, LI X Q, et al. Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay[J]. Food Chemistry,2012,130(4):1061−1065. doi: 10.1016/j.foodchem.2011.07.133
    [66]
    WANG X M, LIUFU T, BELOGLAZOVA N, et al. Development of a competitive indirect enzyme-linked immunosorbent assay for screening phenylethanolamine a residues in pork samples[J]. Food Analytical Methods,2016,9(11):3099−3106. doi: 10.1007/s12161-016-0500-z
    [67]
    NI T T, PENG D P, WANG Y X, et al. Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk[J]. Food Chemistry,2019,286:234−240. doi: 10.1016/j.foodchem.2019.02.011
    [68]
    LI Z B, CUI P L, LIU J, et al. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle[J]. Food Chemistry,2020,311:125966.1−125966.9.
    [69]
    YU W B, ZHANG T T, MA M F, et al. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation[J]. Analytica Chimica Acta,2018,1027:130−136. doi: 10.1016/j.aca.2018.04.035
    [70]
    JI H X, XIA C X, XU J J, et al. A highly sensitive immunoassay of pesticide and veterinary drug residues in food using by tandem conjugation of bi-functional mesoporous silica nanospheres[J]. The Analyst,2020,145(6):2226−2232. doi: 10.1039/C9AN02430A
    [71]
    李研东, 韩雪, 吴雨洋, 等. 动物性食品中四环素类药物残留量子点荧光免疫技术研究[J]. 农产品质量与安全,2017(5):83−86,91. [LI Y D, HAN X, WU Y Y, et al. Study on fluorescence immunoassay of tetracycline residues in animal food by quantum dots[J]. Quality and Safety of Agricultural Products,2017(5):83−86,91.
  • Cited by

    Periodical cited type(5)

    1. 赵斌,李娣娣,袁源,韦婷. 发酵型功能酒的现代研究进展. 酿酒. 2025(02): 43-49 .
    2. 陈乙源,洪嘉欣,黄河,王硕,武亚帅,赵东瑞,孙金沅,黄明泉,孙啸涛. 基于GC×GC-MS分析不同等级浓香型白酒的关键风味化合物. 中国酿造. 2025(03): 29-35 .
    3. 舒翔,邱奇琦. 果酒降酸专利技术分析. 安徽农学通报. 2024(04): 97-101 .
    4. 廖娟,李嘉宇,黄杰惠,陈博慧,杨涛. 耐低温酵母的分离鉴定及对低温酿造米酒品质的影响. 食品工业科技. 2024(07): 159-166 . 本站查看
    5. 王爱灵,张梅,申娜娜,徐梦文,章骏伟,李瑞龙,兰伟. 黑果腺肋花楸果酒生产工艺研究进展. 滁州学院学报. 2024(02): 21-28 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (311) PDF downloads (32) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return