YU Jincheng, WANG Shuyu, CUI Nan, et al. Preparation and Physicochemical Properties of Hawthorn Polyphenol Microcapsules[J]. Science and Technology of Food Industry, 2023, 44(2): 222−231. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040007.
Citation: YU Jincheng, WANG Shuyu, CUI Nan, et al. Preparation and Physicochemical Properties of Hawthorn Polyphenol Microcapsules[J]. Science and Technology of Food Industry, 2023, 44(2): 222−231. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040007.

Preparation and Physicochemical Properties of Hawthorn Polyphenol Microcapsules

More Information
  • Received Date: April 01, 2022
  • Available Online: November 13, 2022
  • In order to improve the stability and bioavailability, hawthorn polyphenols microcapsules were prepared by spray drying using β-cyclodextrin. Whey protein isolate and gum Arabic as concentrations wall materials, and hawthorn polyphenols as the core material. The particle size, microscopic appearance, stability, sustained release and antioxidant properties of the microcapsules were analyzed. The results showed that core-to-wall-material ratio was 1:3 (v/v), air inlet temperature was 165 ℃ and emulsification time was 11.4 min as the optimum preparation process. Under all conditions optimized, the encapsulation rate was 94.45%±1.03% and the drug loading was 17.99%±0.20% of hawthorn polyphenol microcapsules, which average particle size was 6.77 μm, the microcapsules gained complete particles and spherical structure. The microcapsules showed well stability in gastric juice and well release performance in intestinal juice. The release rates of hawthorn polyphenols and hawthorn polyphenol microcapsules after 2 h of simulated gastric juice digestion were 13.38% and 9.75%, respectively, and 6 h after intestinal juice digestion were 95.99% and 72.53%, respectively. The oxidations resistance and stabilities were improved obviously after encapsulation. The IC50 values of hawthorn polyphenols for DPPH, OH, O2 free radical scavenging rates were 12.669 μg/mL and 1.131, 0.581 mg/mL, respectively, and the hawthorn polyphenol microcapsules were 0.939 μg/mL and 0.129, 0.546 mg/mL, respectively. After 10 days of light exposure, the retention rates of hawthorn polyphenols and hawthorn polyphenols microcapsules were 64.99% and 86.74%, respectively. The retention rates at 80°C were 70.77% and 88.77%, respectively, and the retention rates of hawthorn polyphenols and hawthorn polyphenols microcapsules stored without packaging for 28 days were 73.48% and 91.15%, respectively. These above results indicated that microcapsule technology could improve the stability, sustained release and antioxidant activities of hawthorn polyphenols, and could be used as an effective method to improve the processing stability of hawthorn polyphenols.
  • [1]
    LIU P, KALLIO H, YANG B. Phenolic compounds in hawthorn (Crataegus grayana) fruits and leaves and changes during fruit ripening[J]. Journal of Agricultural & Food Chemistry,2011,59(20):11141−11149.
    [2]
    LIU S W, YU J C, FU M F, et al. Regulatory effects of hawthorn polyphenols on hyperglycemic, inflammatory, insulin resistance responses, and alleviation of aortic injury in type 2 diabetic rats[J]. Food Research International,2021,142:110239. doi: 10.1016/j.foodres.2021.110239
    [3]
    袁燕燕, 步世忠, 王福艳. 山楂树资源防治2型糖尿病及其并发症的研究进展[J]. 中草药,2016,47(12):2182−2187. [YUAN Y Y, BU S H, WANG F Y. Advance in study on hawthorn resource for prevention and treatment of type 2 diabetes and its complications[J]. Chinese Traditional and Herbal Drugs,2016,47(12):2182−2187. doi: 10.7501/j.issn.0253-2670.2016.12.028
    [4]
    LOU X, B, GUO X, WANG K, et al. Phenolic profiles and antioxidant activity of Crataegus pinnatifida fruit infusion and decoction and influence of in vitro gastrointestinal digestion on their digestive recovery(Article)[J]. LWT,2021:110171.
    [5]
    WANG Y, LI M, WANG L, et al. Improvement of the stabilities and antioxidant activities of polyphenols from the leaves of Chinese star anise (Illicium verum Hook. f.) using β-cyclodextrin-based metal–organic frameworks[J]. Journal of the Science of Food and Agriculture,2021(1):287−296.
    [6]
    LI D, ZHU M, LIU X, et al. Insight into the effect of microcapsule technology on the processing stability of mulberry polyphenols(Article)[J]. LWT,2020:109144.
    [7]
    YIN C, CHENG L, ZHANG X, et al. Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols[J]. Journal of Food Biochemistry,2020(9):e13380.
    [8]
    HUI C, SAROGLU O, KARADAG A, et al. Available technologies on improving the stability of polyphenols in food processing[J]. Food Frontiers,2021(2):109−139.
    [9]
    ROMERO-GONZLEZ J, SHUN AH-HEN K, LEMUS-MONDACA R, et al. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules[J]. J Food Chemistry,2020:126115.
    [10]
    ZYAITDINOV D, EWTEEW A, BANNIKOVA A. Immobilization of oat bran polyphenols in complex coacervates of whey protein and malthodextrin[J]. Food Processing: Techniques & Technology,2020(3):460−469.
    [11]
    WANG J, MARTÍNEZ-HERNÁNDEZ A, DE LAMO-CASTELLVÍ S, et al. Low-energy membrane-based processes to concentrate and encapsulate polyphenols from carob pulp(Article)[J]. Journal of Food Engineering,2020:109996.
    [12]
    姚云平, 陈丽媛, 刘丹, 等. 茶多酚微胶囊的理化特性及其在油脂中的抗氧化性能[J]. 中国油脂,2021,46(10):116−120. [YAO Y P, CHEN L Y, LIU D, et al. Physicochemical characteristics of tea polyphenol microcapsules and its antioxidant properties in oils[J]. China Oils and Fats,2021,46(10):116−120. doi: 10.19902/j.cnki.zgyz.1003-7969.200686
    [13]
    田莉. 苹果渣多酚的提取及微胶囊制备方法研究[D]. 杨凌: 西北农林科技大学, 2017.

    TIAN L. study on extraction and microencapsulation of polyphenols in apple pomace[D]. Yangling: Northwest A&F University, 2017.
    [14]
    LIU S, YOU L, ZHAO Y, et al. Hawthorn polyphenol extract inhibits UVB-induced skin photoaging by regulating MMP expression and type I procollagen production in mice[J]. Journal of Agricultural and Food Chemistry,2018(32):8537−8546.
    [15]
    SHARAYEI P, AZARPAZHOOH E, RAMASWAMY H S. Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel[J]. Journal of food science and technology,2020(2):723−733.
    [16]
    林倩, 吴昊, 刘芊辰, 等. 响应面法优化福林酚法测定冬枣中总酚含量[J]. 食品工业,2020,41(4):86−90. [LIN Q, WU H LIU Qian C, et al. Optimization of Folin-Ciocalteu method for total phenol content in winter jujube by response surface methodology[J]. The Food Industry,2020,41(4):86−90.
    [17]
    YAZDI A P G, BARZEGAR M, SAHARI M, et al. Encapsulation of pistachio green hull phenolic compounds by spray drying[J]. Journal of Agricultural Science & Technology,2021(1):51−64.
    [18]
    ZHANG H, WEI S, YAN J, et al. Development of double layer microcapsules for enhancing the viability of Lactobacillus casei LC2W in simulated gastrointestinal fluids[J]. LWT-Food Science & Technology,2021,145:111319.
    [19]
    YADAV K, BAJAJ R K, MANDAL S, et al. Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends[J]. Journal of food science and technology,2020(2):426−434.
    [20]
    NGOMBE N K, NGOLO C N, KIALENGILA D M, et al. Cellular antioxidant activity and peroxidase inhibition of infusions from different aerial parts of Cassia occidentalis[J]. Journal of Biosciences and Medicines,2019(4):83−94.
    [21]
    SHEN Q, OU A, LIU S, et al. Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides[J]. Journal of Food Biochemistry,2019(4):e12789.
    [22]
    LIU S, JIA M, CHEN J, et al. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber[J]. Food Hydrocolloids,2019:284−292.
    [23]
    纪秀凤, 吕长鑫, 芦宇, 等. 红树莓籽黄酮微胶囊工艺优化及其体外模拟胃肠消化[J]. 食品工业科技,2019,40(5):182−187. [JI X F, LÜ C X, LU Y, et al. Optimization of microencapsulation of flavonoids from red raspberry seeds and its simulated gastrointestinal digestion in vitro[J]. Science and Technology of Food Industry,2019,40(5):182−187. doi: 10.13386/j.issn1002-0306.2019.05.030
    [24]
    廖霞, 杨小兰, 李瑶, 等. 槲皮素微胶囊的贮藏稳定性及抗氧化活性[J]. 食品科学,2017,38(1):60−66. [LIAO X, YANG X, LI Y, et al. Storage stability and antioxidant activity of quercetin microcapsules[J]. Food Science,2017,38(1):60−66.
    [25]
    马立然. 橡实多酚的提取、微胶囊化及其性能的研究[D]. 长沙: 中南林业科技大学, 2012.

    MA L R. The research on extraction and microencapsulation of acorn polyphenols and the character of microcapsule[D]. Changsha: Central South University of Forestry and Technology, 2012.
    [26]
    唐婷范, 黄芳丽, 梁杰婷, 等. 葛根素微胶囊的制备及其性质研究[J]. 食品工业科技,2021,42(8):179−185. [TANG T F, HUANG F L, LIANG J T, et al. Preparation and properties of puerarin microcapsules[J]. Science and Technology of Food Industry,2021,42(8):179−185.
    [27]
    赵彦巧, 王月, 孟翔宇, 等. 喷雾干燥法制备玫瑰茄花色苷微胶囊条件优化[J]. 福建农业学报,2021,36(1):104−114. [ZHAO Y Q, WANG Y, MENG X Y, et al. Optimized preparation of spray-dried anthocyanins microcapsules[J]. Fujian Journal of Agricultural Sciences,2021,36(1):104−114. doi: 10.19303/j.issn.1008-0384.2021.01.013
    [28]
    LI T, TENG D, MAO R, et al. Recent progress in preparation and agricultural application of microcapsules[J]. Journal of Biomedical Materials Research, Part A,2019(10):2371−2385.
    [29]
    SOOTTITANTAWAT A, YOSHII H, FURUTA T, et al. Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds[J]. Journal of food science and technology,2003(7):2256−2262.
    [30]
    朱建宇, 齐宝坤, 李杨, 等. 不同壁材对大豆生物解离乳状液微胶囊品质的影响[J]. 食品工业科技,2019,40(22):56−61. [ZHU J Y, QI B K, LI Y, et al. Effects of different coating materials on quality of microencapsulation enzyme-assisted aqueous extraction processing of soybean emulsion[J]. Science and Technology of Food Industry,2019,40(22):56−61. doi: 10.13386/j.issn1002-0306.2019.22.010
    [31]
    乔绚. 速溶红茶浸提工艺与微胶囊化的制备及其品质特性研究[D]. 杭州: 浙江工商大学, 2020.

    QIAO X. Study on the extraction technology and microencapsulation of instant black tea and its ouality characteristics[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [32]
    张茜青, 齐崴, 王梦凡, 等. 以螺旋藻为主壁材的亚麻油微胶囊制备[J]. 食品与生物技术学报,2017,36(4):343−351. [ZHANG X Q, QI W, WANG M F, et al. Microencapsulation of flaxseed oil using spirulina as main wall material[J]. Journal of Food Science and Biotechnology,2017,36(4):343−351. doi: 10.3969/j.issn.1673-1689.2017.04.002
    [33]
    SILVA M C, SOUZA V B D, THOMAZINI M, et al. Use of the jabuticaba (Myrciaria cauliflora) depulping residue toproduce a natural pigment powder with functional properties(Article)[J]. LWT-Food Science and Technology,2014(1):203−209.
    [34]
    郑虎哲, JIHYE C, GIUN S, 等. 苹果多酚-壳寡糖微胶囊的制备表征及释放特性(英文)[J]. 农业工程学报,2020,36(14):281−289. [ZHENG H Z, JIHYE C, GIUN S, et al. Preparation, characterization and health benefit functions of unripe apple polyphenols chitooligosaccharides microcapsule[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(14):281−289.
    [35]
    崔丽霞. 紫苏花色苷提取纯化及其微胶囊化研究[D]. 太原: 中北大学, 2018.

    CUI L X. Extraction, purification and microencapsulation of Perilla anthocyanins[D]. Taiyuan: North University of China, 2018.
    [36]
    MAQSOOD S, AL-DOWAILA A, MUDGIL P, et al. Comparative characterization of protein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion[J]. Food Chem,2019,279:328−338. doi: 10.1016/j.foodchem.2018.12.011
    [37]
    JAFARI S M, ASSADPOOR E, HE Y, et al. Encapsulation efficiency of food flavours and oils during spray drying[J]. Drying Technology,2008,26(7):816−835. doi: 10.1080/07373930802135972
    [38]
    AIZPURUA-OLAIZOLA O, NAVARRO P, VALLEJO A, et al. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes(Article)[J]. Food Chemistry,2016:614−621.
    [39]
    WANG J, LI H, CHEN Z, et al. Characterization and storage properties of a new microencapsulation of tea polyphenols[J]. Industrial Crops and Products,2016:152−156.
    [40]
    熊燕. 金花茶多酚HPMCP微胶囊的制备及其抗氧化性研究[D]. 南宁: 广西大学, 2011.

    XIONG Y. Study on preparation of camellia chrysanthapolyphenol hpmcp microcapsule and its antioxidant capacity[D]. Nanning: Guangxi University, 2011.
    [41]
    马懿. 新型紫薯花色苷微胶囊的设计及其抗氧化机制研究[D]. 重庆: 重庆大学, 2016.

    MA Y. Construction of new purple sweet potato anthocyanins microcapsules and study of their antioxidant mechanisms[D]. Chongqing: Chongqing University, 2016.
    [42]
    陈忠宝. 蓝靛果多酚微胶囊的制备及其稳定性研究[D]. 哈尔滨: 黑龙江大学, 2021.

    CHEN Z B. Preparation and stability of polyphenol microcapsules of Indigo fruit[D]. Harbin: Heilongjiang University, 2021.
  • Cited by

    Periodical cited type(15)

    1. 黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 . 本站查看
    2. 张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
    3. 朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
    4. 薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
    5. 吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
    6. 缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
    7. 孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
    8. 朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
    9. 黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 . 本站查看
    10. 宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 . 本站查看
    11. 刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
    12. 张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
    13. 龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
    14. 王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
    15. 刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (195) PDF downloads (10) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return