XIAN Fangying, ZHAO Wenpeng, WANG Siyu, et al. Analysis of the Structure and Function of High Temperature and Rapid Fermentation Douchi Flora Based on Macrogenome Sequencing Technology[J]. Science and Technology of Food Industry, 2023, 44(2): 159−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030348.
Citation: XIAN Fangying, ZHAO Wenpeng, WANG Siyu, et al. Analysis of the Structure and Function of High Temperature and Rapid Fermentation Douchi Flora Based on Macrogenome Sequencing Technology[J]. Science and Technology of Food Industry, 2023, 44(2): 159−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030348.

Analysis of the Structure and Function of High Temperature and Rapid Fermentation Douchi Flora Based on Macrogenome Sequencing Technology

More Information
  • Received Date: March 28, 2022
  • Available Online: November 10, 2022
  • To reveal the change rule of the microbiota structure of high-temperature fast-fermented Aspergillus-type Douchi during the fermentation process, and to analyze the difference between the distribution of functional gene and its contribution in different fermentation stages. The diversity of the microbiota and its function in high-temperature fast-fermentation Douchi was analyzed based on metagenomics methods, so as to reveal the changes in the microbiota structure and the distribution of metabolic functions. The results of microbiota structure diversity showed that the bacteria occupied the 98.9%~99.8% of organisms in fermented Douchi. In the early stage of fermentation, the four dominant genera Weissella, Lactobacillus, Pediococcus and Enterococcus were all lactic acid bacteria, which accounting for 69.91% of the microbiota. In the middle and late stages, obligate anaerobic bacteria such as Bacteroide, Prevotella, and Enterococcus were dominant genera. The KEGG results showed that genes related to metabolism accounted for more than 50%, indicating that the fermentation process was vigorous in metabolism, of which carbohydrate metabolism and amino acid metabolism were the main metabolic pathways. The CAZy results showed that the gene abundance of glycoside hydrolase and glycosyltransferase was the highest, indicating that the glycoside transfer was active during the fermentation process, where the abundant oligosaccharides and monosaccharides were produced for the metabolic utilization of microbial community. The above research can provide a new insight for the improvement of the multi-bacteria mixed fermentation process of Douchi, and also lay a foundation for the subsequent application of multi-omics technology to explore the internal mechanism of the formation of microorganisms and functional flavor substances in Douchi.
  • [1]
    郑娟. 金豆豉的发酵工艺研究[D]. 贵州: 贵州大学, 2019

    ZHENG J. The fermentation technology research of gold lobster sauce[D]. Guizhou: Guizhou University, 2019.
    [2]
    XU L, DU B, XU B J. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China[J]. Food Chemistry,2015,174:202−213. doi: 10.1016/j.foodchem.2014.11.014
    [3]
    陈怡, 刘洋, 蒋立文, 等. 浏阳豆豉发酵过程中抗氧化成分及活性变化研究[J]. 食品工业科技,2020,41(19):273−278. [CHEN Y, LIU Y, JIANG L W, et al. Study on antioxidant components and activity changes of Liuyang Douchi during fermentation[J]. Science and Technology of Food Industry,2020,41(19):273−278.
    [4]
    樊美琪, 杨芳, 贾洪锋, 等. 基于GC-MS探究郫县豆瓣和豆豉对盐煎肉挥发性风味物质的影响[J]. 食品工业科技,2021,42(13):274−283. [FAN M Q, YANG F, JIA H F, et al. Effects of Pixian Douban and Douchi on the volatile flavor compounds of fried pork with salted pepper based on GC-MS[J]. Science and Technology of Food Industry,2021,42(13):274−283.
    [5]
    LIU L B, CHEN X Q, HAO L L, et al. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities[J]. Critical Reviews in Food Science and Nutrition,2022,62(7):1971−1989. doi: 10.1080/10408398.2020.1848792
    [6]
    LIU C J, GONG F M, LI X R, et al. Natural populations of lactic acid bacteria in Douchi from Yunnan Province, China[J]. Journal of Zhejiang University Science B,2012,13(4):298−306. doi: 10.1631/jzus.B1100221
    [7]
    CHEN T T, WU Q L, JIANG S Y, et al. Investigation of the microbial changes during koji-making process of Douchi by culture-dependent techniques and PCR-DGGE[J]. International Journal of Food Science and Technology,2011,46(9):1878−1883. doi: 10.1111/j.1365-2621.2011.02696.x
    [8]
    夏梦雷, 杨帆, 陆锴, 等. 高通量测序技术在传统发酵食品微生物群落中的应用研究[J]. 中国酿造,2021,40(5):1−7. [XIA M L, YANG F, LU K, et al. Advances in the application of high-throughput sequencing technology in traditional fermented foods[J]. China Brewing,2021,40(5):1−7.
    [9]
    帅瑞云. 基于集成学习的宏基因组16S rRNA片段分类方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018

    SHUAI R Y. An ensemble approach for 16S rRNA classification in metagenomics[D]. Harbin: Harbin Institute of Technology, 2018.
    [10]
    陈镜如, 边鑫, 杨杨, 等. 中国传统发酵食品微生物多样性研究进展[J]. 中国调味品,2022,47(2):205−210. [CHEN J R, BIAN X, YANG Y, et al. Research progress on microbial diversity of traditional fermented food in China[J]. China Condiment,2022,47(2):205−210.
    [11]
    LI D, LIU C M, LUO R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics,2015,31(10):1674−1676. doi: 10.1093/bioinformatics/btv033
    [12]
    YANG L, YANG H L, TU Z C, et al. High-throughput sequencing of microbial community diversity and dynamics during Douchi fermentation[J]. PloS One,2016,11(12):e0168166. doi: 10.1371/journal.pone.0168166
    [13]
    ZHANG P W, LI H, ZHAO W P, et al. Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type Douchi during fermentation[J]. Food Research International,2022,153:110392.
    [14]
    BUCHFINK B, REUTER K, DROST H G. Sensitive protein alignments at tree-of-life scale using diamond[J]. Nature Methods,2021,18(4):366−368. doi: 10.1038/s41592-021-01101-x
    [15]
    STEWART R D, AUFFRET M D, WARR A, et al. Compendium of 4, 941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery[J]. Nature Biotechnology,2019,37(8):953−961. doi: 10.1038/s41587-019-0202-3
    [16]
    张鹏飞, 乌日娜, 武俊瑞. 传统发酵大豆制品挥发性成分和微生物多样性的研究进展[J]. 中国酿造,2018,37(12):1−6. [ZHANG P F, WU R N, WU J R. Research advance on volatile components and microbial diversity of traditional fermented soybean products[J]. China Brewing,2018,37(12):1−6.
    [17]
    张菊. 曲霉型豆豉发酵过程中细菌群落及代谢机理研究[D]. 南昌: 江西师范大学, 2019

    ZHANG J. Bacterial community and metabolic mechanism during fermentation of Aspergillus type Douchi[D]. Nanchang: Jiangxi Normal University, 2019.
    [18]
    谭强来, 曾臻, 吴兰兰, 等. 基于高通量测序的江西特色发酵豆豉中微生物群落多样性及其特征分析[J]. 食品工业科技,2019,40(3):85−89,96. [TAN Q L, ZENG Z, WU L L, et al. Diversity and characteristics of microbial community in fermented Douchi from Jiangxi province using high-throughput sequencing technology[J]. Science and Technology of Food Industry,2019,40(3):85−89,96.
    [19]
    熊骏. 云南传统发酵豆豉由来乳酸菌中主要有机酸的分析及其抑菌效果研究[D]. 昆明: 昆明理工大学, 2011

    XIONG J. Analysis of major organic acids from lactic acid bacteria isolated from Yunnan traditional fermented Douchi and study on bacteriostasis[D]. Kunming: Kunming University of Science and Technology, 2011.
    [20]
    赵文鹏, 李浩, 杨慧林, 等. 曲霉型豆豉发酵阶段细菌群落的演替及其与环境因子的关系[J]. 食品科学,2021,42(4):138−144. [ZHAO W P, LI H, YANG H L, et al. Bacterial community succession during the fermentation of Aspergillus-type Douchi, a traditional Chinese fermented soybean product, and its relation with environmental factors[J]. Food Science,2021,42(4):138−144.
    [21]
    李浩. 传统曲霉型豆豉中微生物与风味形成的关联研究[D]. 南昌: 江西师范大学, 2021

    LI H. Fermentation relationship between microorganism and flavor formation in traditional Aspergillus-type Douchi[D]. Nanchang: Jiangxi Normal University, 2021.
    [22]
    李学贤, 张雪, 童灵, 等. 游离氨基酸改善作物风味品质综述[J]. 中国农业大学学报,2022,27(4):73−81. [LI X X, ZHANG X, TONG L, et al. Summary of free amino acids to improve crop flavor quality[J]. Journal of China Agricultural University,2022,27(4):73−81.
    [23]
    赵文鹏. 曲霉型豆豉发酵过程中品质特性及微生物变化规律研究[D]. 南昌: 江西师范大学, 2020

    ZHAO W P. Quality characteristics and microbial mommunity evolution of Aspergillus-type Douchi during fermentation[D]. Nanchang: Jiangxi Normal University, 2020.
    [24]
    WEN H, XIONG K, YANG H L, et al. Dynamic mechanism of the microbiota of high-salinity organic wastewater with salt-tolerant yeast and its application[J]. Journal of Environmental Chemical Engineering, 2022, 10(3).
    [25]
    夏亚男, 双全. 基于宏基因组技术分析固态发酵枣酒酒醅的微生物多样性及关键风味基因[J]. 食品科学,2022,43(2):192−198. [XIA Y N, SHUANG Q. Metagenomic analysis of microbial diversity and key flavor-related genes in solid-state fermented jujube mash for jujube wine[J]. Food Science,2022,43(2):192−198.
    [26]
    CAI H Y, ZHANG T, ZHANG Q, et al. Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine[J]. Food Microbiology,2018,73:319. doi: 10.1016/j.fm.2018.02.002
    [27]
    CHEN S, XU Y, QIAN M C. Aroma characterization of Chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution[J]. Journal of Agricultural and Food Chemistry,2013,61:11295−11302. doi: 10.1021/jf4030536
    [28]
    HUANG Z R, HONG J L, XU J X, et al. Exploring core functional microbiota responsible for the production of volatile flavour during the traditional brewing of Wuyi Hong Qu glutinous rice wine[J]. Food Microbiology,2018,76:487−496. doi: 10.1016/j.fm.2018.07.014
    [29]
    NGUYEN S N, FLORES A, TALAMANTES D, et al. GeneHunt for rapid domain-specific annotation of glycoside hydrolases[J]. Scientific Reports,2019,9(1):1−10. doi: 10.1038/s41598-018-37186-2
    [30]
    COPETTI M V. Yeasts and molds in fermented food production: An ancient bioprocess[J]. Current Opinion in Food Science,2019,25:57−61.
    [31]
    石聪, 李世瑞, 李跑, 等. 基于高通量测序浏阳豆豉不同发酵阶段微生物多样性分析[J]. 食品与发酵工业,2018,44(2):27−32. [SHI C, LI S R, LI P, et al. Analysis of microbial diversity in different fermented stages of Liuyang Douchi based on high throughput sequencing[J]. Food and Fermentation Industries,2018,44(2):27−32.
    [32]
    黄媛媛, 陈华国, 谢文, 等. 多糖与肠道菌群相互作用及其构效关系研究进展[J]. 微生物学通报,2022,49(6):2325−2346. [HUANG Y Y, CHEN H G, XIE W, et al. Interaction between polysaccharide and intestinal flora and its structure-effect relationship: A review[J]. Microbiology China,2022,49(6):2325−2346.
    [33]
    FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nature Reviews Microbiology,2021,19(1):55−71. doi: 10.1038/s41579-020-0433-9
    [34]
    严志鹏, 张皓雅, 涂红艳, 等. 铜藻多糖酶解工艺优化及肠道环境调节功能研究[J]. 核农学报,2018,32(6):1153−1161. [YAN Z P, ZHANG H Y, TU H Y, et al. Enzyme process optimization of Sargassum horueri polysaccharide and regulation function of intestinal environment research[J]. Journal of Nuclear Agricultural Sciences,2018,32(6):1153−1161.
    [35]
    樊敏, 杨萍, 胡萍, 等. 贵州豆豉粑中微生物多样性研究[J]. 中国酿造,2019,38(3):81−88. [FAN M, YANG P, HU P, et al. Microbial diversity in Douchiba from Guizhou[J]. China Brewing,2019,38(3):81−88.
    [36]
    朱子薇, 张健, 王倩, 等. 卟啉代谢途径高价值产物及其微生物合成研究进展[J]. 中国科学:生命科学,2020,50(12):1405−1417. [ZHU Z W, ZHANG J, WANG Q, et al. Recent advances in the production of high-value products of porphyrin metabolism pathways and their microbial synthesis[J]. Sci Sin Vitae,2020,50(12):1405−1417. doi: 10.1360/SSV-2020-0152
    [37]
    CHANDRA P, SINGH R, ARORA P K, et al. Microbial lipases and their industrial applications: A comprehensive review[J]. Microbial Cell Factories,2020,19(1):1−42. doi: 10.1186/s12934-019-1269-8
    [38]
    BENTO C B P, de AZEVEDO A C, DETMANN E, et al. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia producing bacteria from Nellore steers fed tropical forages and supplemented with casein[J]. BMC Microbiology,2015,15(1):28. doi: 10.1186/s12866-015-0369-9
    [39]
    张国华, 张纬珍, 梁武龙, 等. 一株高产胞外多糖乳酸菌的鉴定及其特性研究[J]. 中国食品学报,2020,20(12):229−238. [ZHANG G H, ZHANG W Z, LIANG W L, et al. Studies on identification and characterization of a high-yield exopolysaccharides lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(12):229−238.
    [40]
    SCHWALM N D, GROISMAN E A. Navigating the gut buffet: Control of polysaccharide utilization in Bacteroides spp[J]. Trends in Microbiology,2017,25(12):1005−1015. doi: 10.1016/j.tim.2017.06.009
    [41]
    ZHANG Z, HAN Z, WU Y Q, et al. Metagenomics assembled genome scale analysis revealed the microbial diversity and genetic polymorphism of Lactiplantibacillus plantarum in traditional fermented foods of Hainan, China[J]. Food Research International,2021,150:110785. doi: 10.1016/j.foodres.2021.110785
    [42]
    HU Y L, YANG Q, CHEN D, et al. Study on microbial communities and higher alcohol formations in the fermentation of Chinese Xiaoqu Baijiu produced by traditional and new mechanical technologies[J]. Food Research International,2021,140:109876. doi: 10.1016/j.foodres.2020.109876
  • Cited by

    Periodical cited type(1)

    1. 杨丽娟,王伟伟,许勇泉,江和源. 外源酶在红茶加工中的应用研究进展. 食品工业科技. 2024(07): 344-351 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (407) PDF downloads (34) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return