Citation: | LIU Peng, ZHANG Wen, OU Jie, et al. Adsorption Properties of Lactobacillus plantarum on the Bongkrekic Acid[J]. Science and Technology of Food Industry, 2023, 44(2): 299−306. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030342. |
[1] |
YU-JIAN L, HUA-LIANG L. Research progress on related detection methods of bongkrekic acid[J]. Journal of Food Safety and Quality,2021,12(8):3273−3280.
|
[2] |
梅灿辉, 李汴生, 阮征, 等. 鲜湿粉类食品中产生米酵菌酸风险点的探讨[J]. 食品工业科技,2022,43(6):460−466. [MEI Canhui, LI Biansheng, RUAN Zheng, et al. Discussion on the risk points of producing bongkrekic acid in fresh wet rice noodles and vermicelli[J]. Science and Technology of Food Industry,2022,43(6):460−466.
|
[3] |
SHI R, LONG C, DAI Y, et al. Bongkrekic acid poisoning: Severe liver function damage combined with multiple organ failure caused by eating spoiled food[J]. Legal Medicine,2019,41:101622. doi: 10.1016/j.legalmed.2019.07.010
|
[4] |
MOEBIUS N, ROSS C, SCHERLACH K, et al. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli[J]. Chemistry & Biology,2012,19(9):1164−1174.
|
[5] |
LUO Y, LIU X, YUAN L, et al. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects[J]. Trends in Food Science & Technology,2020,96:127−134.
|
[6] |
胡均鹏, 梁明, 陈荣桥, 等. 紫外光对米酵菌酸的降解效果及动力学分析[J]. 现代食品科技,2021,37(8):208−213. [HU Junpeng, LIANG Ming, CHEN Rongqiao, et al. Degradation effect and kinetic analysis of bongkrekic acid by ultraviolet light[J]. Modern Food Science and Technology,2021,37(8):208−213.
|
[7] |
JI C, FAN Y, ZHAO L. Review on biological degradation of mycotoxins[J]. Animal Nutrition,2016,2(3):127−133. doi: 10.1016/j.aninu.2016.07.003
|
[8] |
丁诗瑶, 雷文平, 刘成国, 等. 不同来源植物乳杆菌的益生特性研究[J]. 中国乳品工业,2021,49(1):20−24. [DING Shiyao, LEI Wenping, LIU Chengguo, et al. Probiotic characteristics of Lactobacillus plantarum strains isolated from different habitats[J]. China Dairy Industry,2021,49(1):20−24. doi: 10.19827/j.issn1001-2230.2021.01.004
|
[9] |
HASSAN A, DIN A U, ZHU Y, et al. Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE−/− mice through modulation of proinflammatory cytokines and oxidative stress[J]. Applied Microbiology and Biotechnology,2020,104(14):6337−6350. doi: 10.1007/s00253-020-10693-x
|
[10] |
王晓敏, 常娟, 王平, 等. 复合益生菌和霉菌毒素降解酶对黄曲霉毒素B1、玉米赤霉烯酮和呕吐毒素的同步降解[J]. 中国饲料,2021(21):85−91. [WANG Xiaomin, CHANG Juan, WANG Ping, et al. Synchronous degradation of aflatoxin B1, zearalenone and deoxynivalenol by compound probiotics and mycotoxin-degradation enzymes[J]. China Feed,2021(21):85−91.
|
[11] |
DU G, LIU L, GUO Q, et al. Microbial community diversity associated with Tibetan kefir grains and its detoxification of ochratoxin A during fermentation[J]. Food Microbiology,2021,99:103803. doi: 10.1016/j.fm.2021.103803
|
[12] |
CHLEBICZ A, ŚLIŻEWSKA K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast[J]. Probiotics and antimicrobial proteins,2020,12(1):289−301. doi: 10.1007/s12602-018-9512-x
|
[13] |
中华人民共和国国家卫生和计划生育委员会. GB 5009.189-2016 食品安全国家标准 食品中米酵菌酸的测定[S]. 北京: 国家食品药品监督管理总局, 2016
National Health and Family Planning Commission of the P. R. C. GB 5009.189-2016 National food safety standards. Determination of bongkrekic acid in food[S]. Beijing: State Food and Drug Administration, 2016.
|
[14] |
侯佰立. 固相萃取-高效液相色谱法快速测定食品中米酵菌酸残留[J]. 现代食品,2019(9):169−172. [HOU Baili. Fast determination of bongkrekic acid in foods using solid phase extraction-high performance liquid chromatography[J]. Modern Foods,2019(9):169−172.
|
[15] |
赵芳, 李艳琴, 李彬春. 模拟人体胃肠道环境筛选益生乳杆菌[J]. 微生物学通报,2016,43(6):1396−1403. [ZHAO Fang, LI Yanqin, LI Binchun. Screening of probiotic Lactobacillus in simulated gastrointestinal environment[J]. Microbiology China,2016,43(6):1396−1403. doi: 10.13344/j.microbiol.china.150898
|
[16] |
MUAZ K, RIAZ M, OLIVEIRA C A F, et al. Aflatoxin M1 in milk and dairy products: Global occurrence and potential decontamination strategies[J]. Toxin Reviews,2022,41(2):588−605. doi: 10.1080/15569543.2021.1873387
|
[17] |
FENG M, CHEN X, LI C, et al. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese paocai and biosorption of Pb(II) by its exopolysaccharide[J]. Journal of Food Science,2012,77(6):T111−T117. doi: 10.1111/j.1750-3841.2012.02734.x
|
[18] |
安璟. 乳酸菌胁迫反应的影响因素及其耐热性的研究[D]. 武汉: 华中农业大学, 2019
AN Jing. Study on the factors affecting the stress reaction of lactic acid bacteria and its thermotolerance[D]. Wuhan: Huazhong Agricultural University, 2019.
|
[19] |
CHERKANI-HASSANI A, GHANNAME I, ZINEDINE A, et al. Aflatoxin M1 prevalence in breast milk in Morocco: Associated factors and health risk assessment of newborns ''CONTAMILK study''[J]. Toxicon,2020,187:203−208. doi: 10.1016/j.toxicon.2020.09.008
|
[20] |
WU Y, SU M, CHEN J, et al. Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies[J]. Dyes and Pigments,2019,170:107591. doi: 10.1016/j.dyepig.2019.107591
|
[21] |
王晓, 郑钧予, 彭晓龙, 等. 乳杆菌脱除伏马毒素的研究[J]. 食品工业科技,2015,36(9):162−165,170. [WANG Xiao, ZHENG Junyu, PENG Xiaolong, et al. Study on the removal of fumonisins by Lactobacillus strains[J]. Science and Technology of Food Industry,2015,36(9):162−165,170.
|
[22] |
LIN D, JI R, WANG D, et al. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb (II): A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(3):395−410. doi: 10.1080/10408398.2017.1374241
|
[23] |
FUJITA S, SUYAMA M, MATSUMOTO K, et al. Synthesis and evaluation of simplified functionalized bongkrekic acid analogs[J]. Tetrahedron,2018,74(9):962−969. doi: 10.1016/j.tet.2018.01.018
|
[24] |
HATAB S, YUE T, MOHAMAD O. Reduction of patulin in aqueous solution by lactic acid bacteria[J]. Journal of Food Science,2012,77(4):M238−M241. doi: 10.1111/j.1750-3841.2011.02615.x
|
[25] |
FOCHESATO A S, CUELLO D, POLONI V, et al. Aflatoxin B1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC 007 in a gastrointestinal tract‐simulated model[J]. Journal of Applied Microbiology,2019,126(1):223−229. doi: 10.1111/jam.14101
|
[26] |
LOMBARDO S, THIELEMANS W. Thermodynamics of adsorption on nanocellulose surfaces[J]. Cellulose,2019,26(1):249−279. doi: 10.1007/s10570-018-02239-2
|
[27] |
ATUN G, HISARLI G, SHELDRICK W S, et al. Adsorptive removal of methylene blue from colored effluents on fuller's earth[J]. Journal of Colloid and Interface Science,2003,261(1):32−39. doi: 10.1016/S0021-9797(03)00059-6
|
[28] |
YAGUB M T, SEN T K, AFROZE S, et al. Dye and its removal from aqueous solution by adsorption: A review[J]. Advances in Colloid and Interface Science,2014,209:172−184. doi: 10.1016/j.cis.2014.04.002
|
[29] |
AHMAD M A, ALROZI R. Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies[J]. Chemical Engineering Journal,2011,171(2):510−516. doi: 10.1016/j.cej.2011.04.018
|
[30] |
SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal,2016,300:254−263. doi: 10.1016/j.cej.2016.04.079
|
[31] |
WANG J, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods[J]. Journal of Hazardous Materials,2020,390:122156. doi: 10.1016/j.jhazmat.2020.122156
|