LIU Changyong, LU Chunxia, CHEN Xia, et al. Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation[J]. Science and Technology of Food Industry, 2023, 44(3): 279−285. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030314.
Citation: LIU Changyong, LU Chunxia, CHEN Xia, et al. Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation[J]. Science and Technology of Food Industry, 2023, 44(3): 279−285. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030314.

Colorimetric Detection of Sudan Based on the Aptamer and Cationic Compound Induced Gold Nanoparticles Aggregation

More Information
  • Received Date: March 24, 2022
  • Available Online: November 28, 2022
  • In this study, a simple, economical and rapid colorimetric assay was developed for the detection of Sudan, in which Sudan-binding aptamer was used as recognition element, unmodified gold nanoparticles (AuNPs) as sensing signal, and poly(diallyldimethylammonium chloride) (PDDA) as inducer for gold nanoparticle aggregation. The sensitivity, accuracy and specificity of developed method were evaluated under optimized condition. Finally, the colorimetric sensor was applied to detection Sudan in food samples, and the results were compared with GB standard method (GB/T 19681-2005). The best procedure for Sudan analysis in our system was: The concentration of aptamer at 5 nmol/L, the concentration of PDDA at 20 nmol/L, and the reaction time was 4 min. The correlation between concentration of Sudan III and absorbance ratio of gold nanoparticles (A650nm/A530nm) was observed to be linear within the range of 3.13 to 50 ng/mL. The limit of visual detection was 3.13 ng/mL by naked-eye observation. The detection time was 5 min. The colorimetric sensor had high specificity for Sudan I, II, III and IV, and no cross-reactivity towards sunset yellow, tartrazine, and 1-amino-2-methylanthraquinone. Further, the colorimetric sensor was applied to measure Sudan Ⅲ in spiked real samples, and the recoveries were in the range of 85.4%~102.5%, with relative standard deviations of 3.37%~6.75%. Our study provides a simple, fast, and easy to read method for Sudan analysis, which can be applied in future on-site detection in food samples.
  • [1]
    TING X U, WEI K Y, WANG J, et al. Development of an enzyme linked immunosorbent assay specific to Sudan red I[J]. Analytical Biochemistry,2010,405:41−49. doi: 10.1016/j.ab.2010.05.031
    [2]
    张卫明, 赵伯涛, 卢庆国, 等. 基于辣椒红素提取的辣椒原料生产质量安全控制技术[J]. 中国野生植物资源,2013,32(5):55−58. [ZHANG W M, ZHAO B T, LU Q G, et al. The quality and safety control technology of hot pepper based on the extraction of capsanthin[J]. Chinese Wild Plant Resources,2013,32(5):55−58. doi: 10.3969/j.issn.1006-9690.2013.05.014
    [3]
    钟丽琪, 曹进, 钱和, 等. 高效液相色谱法测定食品中可能掺杂的16种工业染料[J]. 食品科学,2021,42(22):305−310. [ZHONG L Q, CAO J, QIAN H, et al. Determination of 16 industrial dyes illegally addition in food by high performance liquid chromatography[J]. Food Science,2021,42(22):305−310. doi: 10.7506/spkx1002-6630-20201127-286
    [4]
    PHAM T C, DANG X T, NGUYEN B N, et al. Determination of Sudan I and II in food by high-performance liquid chromatography after simultaneous adsorption on nanosilica[J]. Journal of Analytical Methods in Chemistry,2021(1):1−9.
    [5]
    SHAN W C, XI J Z, SUN J, et al. Production of the monoclonal antibody against Sudan 4 for multi-immunoassay of Sudan dyes in egg[J]. Food Control,2012,27(1):146−152. doi: 10.1016/j.foodcont.2012.03.017
    [6]
    LI J B, YANG Y Q, WANG J H, et al. Resonance rayleigh scattering detection of the epidermal growth factor receptor based on an aptamer-functionalized gold-nanoparticle probe[J]. Analytical Methods,2018,10:2910−2916. doi: 10.1039/C8AY00860D
    [7]
    LU C X, LIU C B, SHI G Q. Colorimetric enzyme-linked aptamer assay utilizing hybridization chain reaction for determination of bovine pregnancy-associated glycoproteins[J]. Microchimica Acta,2020,187:316−324. doi: 10.1007/s00604-020-04301-y
    [8]
    RUBAYE A A, NABOK A, CATANANTE G, et al. Detection of Ochratoxin A in aptamer assay using total internal reflection ellipsometry[J]. Sensor Actuat B-Chem,2018,263:48−251.
    [9]
    王红旗, 张玲, 刘冬梅, 等. 小分子靶标核酸适配体研究进展[J]. 食品与生物技术学报,2015,34(8):790−798. [WANG H Q, ZHANG L, LIU D M, et al. Research progress of aptamer for small molecule target[J]. Journal of Food Science and Biotechnology,2015,34(8):790−798. doi: 10.3969/j.issn.1673-1689.2015.08.002
    [10]
    XU X M, MA X Y, WAND H T, et al. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers[J]. Microchimica Acta,2018,185:325−332. doi: 10.1007/s00604-018-2852-0
    [11]
    LI D L, LIU L Y, HUANG Q L, et al. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria[J]. World Journal of Microbiology & Biotechnology,2021,37:45.
    [12]
    MEHLHORN A, RAHIMI P, JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors 2018, 8: 54.
    [13]
    SCHÜLING T, EILERS A, SCHEPER T, et al. Aptamer-based lateral flow assays[J]. AIMS Bioengineering,2018,5(2):78−102. doi: 10.3934/bioeng.2018.2.78
    [14]
    KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors[J]. Biosensors & Bioelectronics,2016,76:2−19.
    [15]
    YUAN, Q, LU D Q, ZHANG X B, et al. Aptamer-conjugated optical nanomaterials for bioanalysis[J]. Trac-Trends in Analytical Chemistry,2012,39:72−86. doi: 10.1016/j.trac.2012.05.010
    [16]
    WANG Y, LI J, QIAO P, et al. Screening and application of a new aptamer for the rapid detection of Sudan dye III[J]. European Journal of Lipid Science and Technology,2018,120(6):1700112. doi: 10.1002/ejlt.201700112
    [17]
    卢春霞, 李红敏, 孙凤霞, 等. 基于适配体识别的侧向层析法快速检测单核细胞增生李斯特氏菌[J]. 食品与生物技术学报,2020,4:85−92. [LU C X, LI H M, SUN F X, et al. Aptamer-based lateral flow strip for rapid detection of Listeria monocytogenes[J]. Journal of Food Science and Biotechnology,2020,4:85−92. doi: 10.3969/j.issn.1673-1689.2020.04.012
    [18]
    国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 19681-2005食品中苏丹红燃料的检测方法高效液相色谱法[S]. 北京: 中国标准出版社, 2005.

    Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 19681-2005 The method for the determination of Sudan dyes in foods-high performance liquid chromatography[S]. Beijing: Standards Press of China, 2005.
    [19]
    OFIR Y, SAMANTA B, ROTELLO V M. Polymer and biopolymer mediated self-assembly of gold nanoparticles[J]. Chemical Society Reviews,2008,37:1814−1825. doi: 10.1039/b712689c
    [20]
    YAN H Y, QIAO J D, PEI Y N, et al. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds[J]. Food Chemistry,2012,132:649−654. doi: 10.1016/j.foodchem.2011.10.105
    [21]
    杨光勇, 薛光, 郭金喜, 等. 超高效合相色谱-串联质谱法测定中药材中10种偶氮染料[J]. 质谱学报,2021,42(6):1509−1067. [YANG G Y, XUE G, GUO J X, et al. Determination of ten kinds of azo dyes in Chinese medicinal materials by ultra performance convergence chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2021,42(6):1509−1067.
    [22]
    张胜帮, 韩超, 刘继东, 等. 食品中苏丹红I~IV及对位红的GC-MS/SIM法研究[J]. 中国食品学报,2009,9(2):187−193. [ZHANG S B, HAN C, LIU J D, et al. Study on simultaneous determination of sudanI-Sudan IV and para red in food by GC-MS/SIM[J]. Journal of Chinese Institute of Food Science and Technology,2009,9(2):187−193. doi: 10.3969/j.issn.1009-7848.2009.02.031
    [23]
    QI Y H, SHAN W C, LIU Y Z, et al. Production of the polyclonal antibody against Sudan 3 and immunoassay of Sudan dyes in food samples[J]. Journal of Agricultural and Food Chemistry,2012,60:2116−2122. doi: 10.1021/jf300026x
    [24]
    EBRAHIMI-TAZANGI F, BEITOLLAHI H, HEKMATARA H, et al. Design of a new electrochemical sensor based on the CuO/GO nanocomposites: Simultaneous determination of Sudan I and bisphenol A[J]. Journal of the Iranian Chemical Society,2021,18:191−199. doi: 10.1007/s13738-020-02016-8
  • Cited by

    Periodical cited type(12)

    1. 杨洪焱,何雨淇,牛淼,李雄宇,徐亚文,张方坤,李家华. 不同产地不同贮藏时间普洱熟茶香气成分分析. 食品工业科技. 2025(05): 218-229 . 本站查看
    2. 黄海,张晓洲,罗金龙,胡正军,张拓,戴宇樵,陈泳铭,王迅,周雪. 基于气味活度值法分析炒青绿茶与烘青绿茶的香气特征差异. 贵州农业科学. 2025(02): 112-119 .
    3. 吴应奇,陈婷,黎敏,庞月兰,郭春雨. 不同地区桂北大叶种古树白茶感官及品质成分分析. 食品科技. 2025(02): 105-112 .
    4. 马雪妮,丁小维,张李旭,李健苗. 一株“金花”菌的分离鉴定及其发酵茶叶研究. 食品与发酵工业. 2025(07): 293-299 .
    5. 黄慧清,郑玉成,胡清财,吴晴阳,杨云,欧晓西,赵梦莹,孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学. 2024(01): 101-108 .
    6. 李子怡,王锋,赵玲艳,徐永兵,罗凤莲. 基于HS-SPME-GC-MS和多元统计学分析华容芥菜的特征挥发性风味成分. 中国酿造. 2024(03): 234-242 .
    7. 陈国和,胡腾飞,王乐涯,欧行畅,李勤,黄建安,刘仲华,王超. 基于顶空固相微萃取-气相色谱-嗅闻仪-质谱仪结合气味活力值鉴定槟榔香六堡茶关键香气物质. 食品与发酵工业. 2024(08): 271-277 .
    8. 赵志强,陈罗君,饶雨,徐璐,饶军,雷志勇,张丽,高银祥. 基于HS-SPME-GC-MS对不同等级双井绿茶香气物质的研究. 食品工业科技. 2024(10): 273-281 . 本站查看
    9. 梁贤智,骆妍妃,阳景阳,农玉琴,陈杏,梁光志,陈远权. 不同干燥工艺对金牡丹茶树花品质及挥发性风味成分的影响. 食品工业科技. 2024(15): 253-263 . 本站查看
    10. 杨桂强,李吉生,莫璋红,吴玉钧,吕敏,陆燕. 六堡茶香气成分及检测技术研究进展. 中南农业科技. 2024(08): 247-249 .
    11. 马莹,刘谢缘,王碧生,翁淑燚,李利君,倪辉. 焙火工艺对白芽奇兰茶叶挥发性香气成分的影响. 食品科学. 2024(19): 123-129 .
    12. 徐秀娟,薛云,胡军,白家峰,马骥,孙建生,杨春强,吴彦. 糯米香净油的制备及其热裂解产物. 烟草科技. 2023(10): 70-81 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (178) PDF downloads (11) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return