FAN Pengfei, FENG Wu, XIAO Yao, et al. Analysis of Microbial Diversity of Crayfish under Different Culture Modes in Different Provinces Based on High-throughput Sequencing and Traditional Culture Methods[J]. Science and Technology of Food Industry, 2023, 44(1): 181−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030245.
Citation: FAN Pengfei, FENG Wu, XIAO Yao, et al. Analysis of Microbial Diversity of Crayfish under Different Culture Modes in Different Provinces Based on High-throughput Sequencing and Traditional Culture Methods[J]. Science and Technology of Food Industry, 2023, 44(1): 181−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030245.

Analysis of Microbial Diversity of Crayfish under Different Culture Modes in Different Provinces Based on High-throughput Sequencing and Traditional Culture Methods

More Information
  • Received Date: March 20, 2022
  • Available Online: October 30, 2022
  • In this study, crayfish from Huoqiu in Anhui Province, Xuyi in Jiangsu Province, and Jingzhou in Hubei Province were selected as the research objects. Environmental samples of two modes of rice-shrimp co-cropping and aquaculture ponds were taken from Jingzhou. High throughput technology was used to analyze the bacterial diversity, and culture-dependent method was used to isolate, purify and identify the bacteria to verify the type and quantities of dominant bacteria. The results showed that the initial bacterial count of Jingzhou crayfish was slightly lower than that of Xuyi and Huoqiu crayfish, and the difference in the selection medium was small. The results of high-throughput sequencing showed that the dominant of four samples groups bacteria were Aeromonadaceae and Enterobacteriaceae. The abundance of soil microbial community in rice shrimp pond was much higher than that in aquaculture pond, and the microbial community in water was similar. At the genus level, there were differences in the abundance of bacteria in four samples groups of crayfish samples from Jingzhou rice shrimp pond, aquaculture pond, Xuyi and Huoqiu, However, both Aeromonas and Acinetobacter accounted for a higher proportion, followed by 41.8%, 1.8%, 12.4%, 11.4%, 24.5%, 27.5%, 40.1%, 13.0%. The dominant bacteria of crayfish in Jingzhou rice shrimp pond also included Lactococcus and Citrobacter, and the strains of Hafnia and Lactococcus were found in the aquaculture pond samples. The predominant bacteria in Xuyi and Huoqiu crayfish samples were Exiguobacterium and Citrobacter. The culture-dependent results showed that the dominant bacteria were Aeromonas, Hafnia and Citrobacter, which were consistent with the high-throughput results.
  • [1]
    汤靓颖. 小龙虾产业发展研究[J]. 现代农业科技,2009(22):308−309. [TANG L Y. Research on the development of crayfish industry[J]. Modern Agricultural Science and Technology,2009(22):308−309. doi: 10.3969/j.issn.1007-5739.2009.22.203
    [2]
    中国水产学会. 中国小龙虾产业发展报告(2021)[J]. 中国水产,2021(7):27−33. [Chinese Fisheries Society. China crayfish industry development report (2021)[J]. China Fisheries,2021(7):27−33.
    [3]
    赵楠, 武秀丽, 赵桂华. 小龙虾细菌病害研究进展[J]. 水产养殖,2018,39(11):44−46. [ZHAO N, WU X L, ZHAO G H. Research progress on bacterial diseases of crayfish[J]. Journal of Aquaculture,2018,39(11):44−46. doi: 10.3969/j.issn.1004-2091.2018.11.018
    [4]
    林虹, 陈梁发, 谭伟煊, 等. 广州市白云区小龙虾相关横纹肌溶解综合征病例流行病学特征及相关影响因素分析[J]. 公共卫生与预防医学,2021,32(4):71−74. [LIN H, CHEN L F, TAN W X, et al. Epidemiological characteristics and related influencing factors of crayfish-associated rhabdomyolysis syndrome cases in Baiyun District, Guangzhou City[J]. Public Health and Preventive Medicine,2021,32(4):71−74. doi: 10.3969/j.issn.1006-2483.2021.04.016
    [5]
    江杨阳, 杨水兵, 余海霞, 等. 基于培养基法和高通量测序法分析冷藏小龙虾优势腐败菌[J]. 食品科学,2019,40(16):130−136. [JIANG Y Y, YANG S B, YU H X, et al. Analysis of predominant spoilage bacteria in refrigerated crayfish based on culture medium method and high-throughput sequencing method[J]. Food Science,2019,40(16):130−136. doi: 10.7506/spkx1002-6630-20180718-229
    [6]
    金璇, 俞兴伟, 杨章力, 等. 小龙虾重金属和微生物含量检测及食用建议[J]. 分析仪器,2020(2):61−69. [JIN X, YU X W, YANG Z G, et al. Detection of heavy metals and microorganisms in crayfish and suggestions for consumption[J]. Analytical Instruments,2020(2):61−69. doi: 10.3969/j.issn.1001-232x.2020.02.013
    [7]
    欧仁建, 李家胜. 一例小龙虾气单胞菌病的诊治分析[J]. 渔业致富指南,2017(11):47−48. [OU R J, LI J S. Analysis of the diagnosis and treatment of a case of crayfish Aeromonas disease[J]. Fisheries Guide to Prosperity,2017(11):47−48.
    [8]
    赵考诚, 马军, 叶迎, 等. 稻虾生态种养综合效应研究进展[J]. 作物杂志,2021(2):22−27. [ZHAO K C, MA J, YE Y, et al. Research progress on the comprehensive effect of ecological planting and breeding of rice and shrimp[J]. Crop Journal,2021(2):22−27. doi: 10.16035/j.issn.1001-7283.2021.02.003
    [9]
    佀国涵, 彭成林, 徐祥玉, 等. 稻–虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤,2016,48(3):503−509. [QI G H, PENG C L, XU X Y, et al. Effects of rice-shrimp co-cropping mode on soil microbial community diversity and soil fertility in waterlogged paddy fields[J]. Soil,2016,48(3):503−509. doi: 10.13758/j.cnki.tr.2016.03.013
    [10]
    邱秉慧, 王海帆, 秦乐蓉, 等. 小龙虾加工和流通过程中的食品安全与品质控制技术研究进展[J]. 肉类研究,2021,35(9):43−50. [QIU B H, WANG H F, QIN L R, et al. Research progress on food safety and quality control technology in crayfish processing and distribution[J]. Meat Research,2021,35(9):43−50. doi: 10.7506/rlyj1001-8123-20210406-092
    [11]
    张艳凌, 向俊飞, 朱亚军, 等. 鲜活和死后小龙虾的冷藏特性比较[J]. 食品科学,2022,43(1):206−212. [ZHANG Y L, XIANG J F, ZHU Y J, et al. Comparison of refrigerated characteristics of fresh and dead crayfish[J]. Food Science,2022,43(1):206−212. doi: 10.7506/spkx1002-6630-20201019-167
    [12]
    殷允旭. 虾仁的超高压杀菌工艺研究[D]. 合肥: 合肥工业大学, 2007.

    YIN Y X. Research on ultra-high pressure sterilization process of shrimp[D]. Hefei: Hefei University of Technology, 2007.
    [13]
    周涛, 吴晓营, 罗海波, 等. 贮藏温度对即食小龙虾品质及微生物菌群多样性的影响[J]. 食品与机械,2019,35(9):141−146. [ZHOU T, WU X Y, LUO H B, et al. Effects of storage temperature on quality and microbial flora diversity of ready-to-eat crayfish[J]. Food and Machinery,2019,35(9):141−146. doi: 10.13652/j.issn.1003-5788.2019.09.028
    [14]
    邓灵, 赵康, 夏开, 等. 小龙虾(Procambarus clarkii)加工前后优势腐败菌的分离与鉴定[J]. 食品工业科技,2020,41(18):100−104. [DENG L, ZHAO K, XIA K, et al. Isolation and identification of dominant spoilage bacteria in crayfish (Procambarus clarkii) before and after processing[J]. Food Industry Science and Technology,2020,41(18):100−104.
    [15]
    汤纯, 刘芳, 诸永志, 等. 基于传统分离培养和宏基因组测序分析不同产地小龙虾菌群的多样性[J]. 中国食品学报,2021,21(2):260−268. [TANG C, LIU F, ZHU Y Z, et al. Analysis of the diversity of crayfish flora from different origins based on traditional isolation and culture and metagenomic sequencing[J]. Chinese Journal of Food Science,2021,21(2):260−268.
    [16]
    LI L Z. Isolation and identification cultivable microbes from the antarctic krill (Euphausia superba) and other Antarctic samples[J]. International Journal of Ecology,2018,7(1):29−36. doi: 10.12677/IJE.2018.71005
    [17]
    刘晓红, 李嘉文, 翟平平, 等. 卤鸭脖中优势腐败菌和致病菌的分离与鉴定[J]. 肉类工业,2012(6):32−34. [LIU X H, LI J W, ZHAI P P, et al. Isolation and identification of dominant spoilage bacteria and pathogenic bacteria in braised duck neck[J]. Meat Industry,2012(6):32−34. doi: 10.3969/j.issn.1008-5467.2012.06.015
    [18]
    WANG X, ZHANG Y, REN H, et al. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing[J]. LWT,2018,90:108−115. doi: 10.1016/j.lwt.2017.12.011
    [19]
    LI N, ZHANG Y X, WU Q P, et al. High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage[J]. Food Microbiology,2019:83.
    [20]
    XING J L, XU X R, LUO X H, et al. Characterization of microbial community in cold-chain hairtail fish by high-throughput sequencing technology[J]. Journal of Food Protection,2021,84(6):1080−1087. doi: 10.4315/JFP-20-393
    [21]
    ÖZOGUL F, POLAT A, ÖZOGUL Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardinapilchardus)[J]. Food Chemistry,2004,85(1):49−57. doi: 10.1016/j.foodchem.2003.05.006
    [22]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 4789.2-2016 食品安全国家标准 食品微生物学检验菌落总数测定[S]. 北京: 中国标准出版社, 2016: 1−5.

    State Food and Drug Administration, National Health and Family Planning Commission. GB 4789.2-2016 National food safety standard Food microbiological inspection determination of total colony[S]. Beijing: China Standards Press, 2016: 1−5.
    [23]
    PARLAPANI F F, MEZITI A, KORMAS K A, et al. Indigenous and spoilage microbiota of farmed sea bream stored in ice identified by phenotypic and 16S rRNA gene analysis[J]. Food Microbiology,2013,33:85−89. doi: 10.1016/j.fm.2012.09.001
    [24]
    ANDREEVSKAYA M, JOHANSSON P, LAINE P, et al. Genome sequence and transcriptome analysis of meat-spoilage-associated lactic acid bacterium Lactococcus piscium MKFS47[J]. Applied and Environmental Microbiology,2015,81(11):3800−3811. doi: 10.1128/AEM.00320-15
    [25]
    高晓光, 吕蒙, 臧芳波, 等. 小龙虾加工与保鲜技术研究进展[J]. 保鲜与加工,2021,21(12):126−131, 139. [GAO X G, LÜ M, ZANG F B, et al. Research progress of crayfish processing and preservation technology[J]. Preservation and Processing,2021,21(12):126−131, 139. doi: 10.3969/j.issn.1009-6221.2021.12.018
    [26]
    邓祥宜, 李池茜, 张涵池, 等. 养殖塘和市售小龙虾肠道细菌多样性的比较[J]. 微生物学杂志,2021,41(3):44−52. [DENG X Y, LI C Q, ZHANG H C, et al. Comparison of gut bacterial diversity between culture ponds and commercial crayfish[J]. Journal of Microbiology,2021,41(3):44−52. doi: 10.3969/j.issn.1005-7021.2021.03.007
    [27]
    PAN L F, YANG Y H, PENG Y N, et al. The novel pathogenic Citrobacter freundii (CFC202) isolated from diseased crucian carp (Carassius auratus) and its ghost vaccine as a new prophylactic strategy against infection[J]. Aquaculture,2021:533.
    [28]
    LIU X, HE X, AN Z, et al. Citrobacter freundii infection in red swamp crayfish (Procambarus clarkii) and host immune-related gene expression profiles[J]. Aquaculture,2020,515(C):734499.
    [29]
    FERANCHUK S, BELKOVA N, POTAPOVA U, et al. Evaluating the use of diversity indices to distinguish between microbial communities with different traits[J]. Research in Microbiology,2018,169(4-5):254−261. doi: 10.1016/j.resmic.2018.03.004
    [30]
    贾丽娟, 王广军, 夏耘, 等. 不同地区稻虾综合种养系统的微生物群落结构分析[J]. 水产学报: 1−13[2022-10-18]. http://kns.cnki.net/kcms/detail/31.1283.s.20211122.1401.004.html.

    JIA L J, WANG G J, XIA Y, et al. Microbial community structure analysis of integrated rice and shrimp farming systems in different regions[J]. Chinese Journal of Fisheries: 1−13[2022-10-18]. http://kns.cnki.net/kcms/detail/31.1283.s.20211122.1401.004.html.
    [31]
    FU L L, WANG C, LIU N N, et al. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica[J]. Food Research International,2018,107:1−9. doi: 10.1016/j.foodres.2018.01.067
    [32]
    林婷, 杨胜平, 郁佳怡, 等. 腐败希瓦氏菌对南美白对虾黑变及品质劣变的影响[J]. 食品与发酵工业,2021,47(20):161−167. [LIN T, YANG S P, YU J Y, et al. Effects of Shewanella spoilage on melanosis and quality deterioration of Penaeus vannamei[J]. Food and Fermentation Industry,2021,47(20):161−167. doi: 10.13995/j.cnki.11-1802/ts.026489
    [33]
    李婷婷, 马艳, 李学鹏, 等. 腐败希瓦氏菌及其与蜂房哈夫尼亚菌共培养对冷藏大菱鲆的致腐能力[J]. 食品科学,2018,39(13):29−34. [LI T T, MA Y, LI X P, et al. The spoilage ability of Shewanella putrefying and its co-culture with Hafnia apiary on refrigerated turbot[J]. Food Science,2018,39(13):29−34. doi: 10.7506/spkx1002-6630-201813005
    [34]
    张小敏, 周国燕, 郭全友, 等. 水产品特定腐败菌及其在鲜度评估中的应用[J]. 食品与发酵科技,2020,56(6):100−107. [ZHANG X M, ZHOU G Y, GUO Q Y, et al. Specific spoilage bacteria in aquatic products and their application in freshness evaluation[J]. Food and Fermentation Science and Technology,2020,56(6):100−107.
  • Cited by

    Periodical cited type(6)

    1. 张月,杨新玥,黄莉,马帅宇,胥畅,杨腊梅,裴慧洁,何维,杨勇. 乳酸菌复配发酵对川味香肠品质及酪胺含量的影响. 食品与发酵工业. 2025(06): 83-90 .
    2. 李莹,钱敏,曾晓房,白卫东,吴清平,杨小鹃,董浩. 畜禽肉类预制菜肴全链条风险因子研究进展. 食品工业科技. 2025(07): 365-374 . 本站查看
    3. 牟燕,赖茂佳,易宇文,范文教. 微生物发酵剂对川味牦牛肉香肠品质的影响. 中国酿造. 2024(02): 188-193 .
    4. 李晓,王成,郭楠楠,潘道东. 嗜酸乳杆菌发酵鸭肉脯工艺优化及品质分析. 肉类研究. 2024(01): 36-43 .
    5. 赵志磊,李昊轩,牛晓颖,陈萌,庞艳苹. γ射线辐照结合VC、烟酰胺对卤驴肉中亚硝酸盐的降解效果. 食品科学. 2024(16): 197-203 .
    6. 文静,许恒毅,甘蓓,周渊坤,张锦峰. 混合菌株发酵板鸭的研究进展. 江西科学. 2024(04): 710-715 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (172) PDF downloads (10) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return