GUO Qiushuang, BAO Qianqian, XU Yinbiao, et al. Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum[J]. Science and Technology of Food Industry, 2023, 44(3): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030161.
Citation: GUO Qiushuang, BAO Qianqian, XU Yinbiao, et al. Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum[J]. Science and Technology of Food Industry, 2023, 44(3): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030161.

Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum

More Information
  • Received Date: March 14, 2022
  • Available Online: December 01, 2022
  • Objective: In this study, Corynebacterium glutamicum ATCC 13032 was used as the chassis cell for synthesizing L-homoserine and analyzing the effect of dissolved oxygen on product synthesis. Methods: First, the product tolerance of C. glutamicum was analyzed by exogenously adding 0~40 g/L L-homoserine. Second, the degradation pathway of L-homoserine was blocked by gene thrB knockout, namely C. glutamicum recombinant strain H1. On this basis, the shake flask with baffles was used for cell culture to enhance oxygen supply capacity in the fermentation process. Results: Compared with Escherichia coli, C. glutamicum had a stronger tolerance to L-homoserine. In the study, C. glutamicum recombinant strain H1 was constructed by deleting the gene thrB. It was found that the growth of recombinant strain H1 returned to normal after adding 0.5 g/L L-threonine in the basal medium. The L-homoserine production of recombinant strain H1 increased to 836.7 mg/L using shake flask with baffles, which was 17.76 times higher than that using ordinary shake flask, which was 44.6 mg/L. Conclusion: C. glutamicum recombinant strain H1 was successfully constructed for producing L-homoserine via blocking the synthesis of L-threonine. It was found that the using of shake flask with baffles to enhance the oxygen supply capacity during fermentation was an effective means to promote the production of L-homoserine by C. glutamicum. This study provides a reference for improving L-homoserine production subsequently.
  • [1]
    HUANG J F, LIU Z Q, JIN L Q, et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine[J]. Biotechnology and Bioengineering,2017,114(4):843−851. doi: 10.1002/bit.26198
    [2]
    AREZKI N R, WILLIAMS A C, COBB J A, et al. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization[J]. International Journal of Cosmetic Science,2017,39(1):72−82. doi: 10.1111/ics.12351
    [3]
    MIN L A , JI A , JG B , et al. Increasing L-homoserine production inEscherichia coli by engineering the central metabolic pathways[J]. Journal of Biotechnology,2020,s314−315:1−7.
    [4]
    曾凡亮, 王宇, 杜升华, 等. 高丝氨酸的合成研究[J]. 精细化工中间体,2016,46(2):17−18, 21. [ZENG F L, WANG Y, DU S H, et al. Synthesis of homoserine[J]. Fine Chemical Intermediates,2016,46(2):17−18, 21. doi: 10.19342/j.cnki.issn.1009-9212.2016.02.004
    [5]
    ARMSTRONG M D. The preparation of D- and L-homoserine[J]. Journal of the American Chemical Society,1948,70(5):1756−1759. doi: 10.1021/ja01185a025
    [6]
    张博, 姚臻豪, 柳志强, 等. 代谢工程改造大肠杆菌生产L-高丝氨酸[J]. 生物工程学报,2021,37(4):1287−1297. [ZHANG B, YAO Z H, LIU Z Q, et al. Metabolic engineering of Escherichia coli for L-homoserine production[J]. Chinese Journal of Biotechnology,2021,37(4):1287−1297. doi: 10.13345/j.cjb.200434
    [7]
    李华. 系统代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学, 2017

    LI H. Systematic metabolic engineering of Escherichia coli for L-methionine production[D]. Wuxi: Jiangnan University, 2017.
    [8]
    LI H, WANG B, ZHU L, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. Journal of Industrial Microbiology & Biotechnology,2017,44(1):1975−1988.
    [9]
    LIU P, ZHANG B, YAO Z H, et al. Multiplex design of metabolic network for production of L-homoserine in Escherichia coli[J]. Applied and Environmental Microbiology,2020,86(20):e01477.
    [10]
    张宇, 夏利, 林蓓蓓, 等. 高效合成L-高丝氨酸大肠杆菌基因工程菌株的构建[J]. 食品科学,2022,43(6):81−88. [ZHANG Y, XIA L, LIN P P, et al. Construction of Escherichia coli chassis for efficient production of L-homoserine[J]. Food Science,2022,43(6):81−88. doi: 10.7506/spkx1002-6630-20210220-219
    [11]
    李宁. 谷氨酸棒状杆菌合成O-乙酰-L-高丝氨酸关键代谢过程调控[D]. 无锡: 江南大学, 2020

    LI N. Regulation of key metabolic processes to biosynthesize O-acetyL-L-homoserine in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2020.
    [12]
    DELE-OSIBANJO T, LI Q, ZHANG X, et al. Growth-coupled evolution of phosphoketolase to improve L-glutamate production by Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology,2019,103(20):8413−8425. doi: 10.1007/s00253-019-10043-6
    [13]
    VASSILEV I, GIEELMANN G, SCHWECHHEIMER S K, et al. Anodic electro-fermentation: Anaerobic production of L-lysine by recombinant Corynebacterium glutamicum[J]. Biotechnology and Bioengineering,2018,115(6):1499−1508. doi: 10.1002/bit.26562
    [14]
    PLACHY J, ULBERT S, PELECHOVA J, et al. Fermentation production of L-homoserine by Corynebacterium sp. and its possible use in the preparation of threonine and lysine[J]. Folia Microbiologica,1985,30(6):485−492. doi: 10.1007/BF02927611
    [15]
    LI N, XU S, DU G, et al. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux[J]. Biochemical Engineering Journal,2020,161:107665. doi: 10.1016/j.bej.2020.107665
    [16]
    刘剑. 溶氧影响谷氨酸发酵代谢的机制及代谢通量分析[D]. 上海: 华东理工大学, 2012

    LIU J. Metabolic mechanism of glutamic acid biosynthesis under different dissolved oxygen concentrations and its metabolic flux analysis[D]. Shanghai: East China University of Science and Technology, 2012.
    [17]
    ZIMMERMANN H F, ANDERLEI T, JOCHEN B, et al. Oxygen limitation is a pitfall during screening for industrial strains[J]. Applied Microbiology and Biotechnology,2006,72(6):1157−1160. doi: 10.1007/s00253-006-0414-6
    [18]
    张夙夙. 溶氧对氨基酸发酵的影响及其控制[J]. 安徽农学通报,2014,20(12):25−30. [ZHANG S S. Influence and control of dissolved oxygen on amino acid fermentation[J]. Anhui Agricultural Science Bulletin,2014,20(12):25−30. doi: 10.16377/j.cnki.issn1007-7731.2014.12.006
    [19]
    李刚, 程度, 李宝健, 等. 利用高效CaCl2转化法实现质粒的共转化[J]. 生物技术,2003,13(6):31−33. [LI G, CHENG D, LI B J, et al. Co-transformation of plasmids by efficient CaCl2 transformation method[J]. Biotechnology,2003,13(6):31−33. doi: 10.3969/j.issn.1004-311X.2003.06.015
    [20]
    孙杨. 谷氨酸棒状杆菌表达系统能量利用相关基因的挖掘和应用[D]. 无锡: 江南大学, 2018

    SUN Y. Mining and application of energy utilizing related genes in favour of heterologous expression system of Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2018.
    [21]
    谭延振. 谷氨酸棒状杆菌基因敲除系统的构建[D]. 无锡: 江南大学, 2012

    TAN Y Z. Construction of gene deletion system in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2012.
    [22]
    朱凯杰, 陆国权, 张迟. 响应面优化DNS测定还原糖方法[J]. 中国粮油学报,2019(6):2−113. [ZHU K J, LU G Q, ZHANG C. Optimization of the determination method of reducing sugar using response surface analysis[J]. Journal of the Chinese Cereals and Oils Association,2019(6):2−113.
    [23]
    KINGSBURY J M, MCCUSKER J H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1) mutants[J]. Eukaryotic Cell,2010,9(5):717−728. doi: 10.1128/EC.00044-10
    [24]
    KARKHANIS V A, MASCARENHAS A P, MARTINIS S A. Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing[J]. Journal of Bacteriology,2007,189(23):8765−8768. doi: 10.1128/JB.01215-07
    [25]
    李昶志, 潘忠成, 翁婧, 等. 微生物发酵中溶氧浓度的控制研究[J]. 绿色科技,2019(6):2. [LI X Z, PAN Z C. WENG J, et al. Study on the control of dissolved oxygen concentration in microbial fermentation[J]. Journal of Green Science and Technol,2019(6):2. doi: 10.16663/j.cnki.lskj.2019.06.080
    [26]
    王震. 谷氨酸棒状杆菌发酵生产L-精氨酸的溶氧条件优化[J]. 安徽农业科学,2019,47(7):120−123. [WANG Z. Optimization of dissolved oxygen conditions for Corynebacterium glutamicum producting L-arginine[J]. Journal of Anhui Agricultural Sciences,2019,47(7):120−123. doi: 10.3969/j.issn.0517-6611.2019.07.038
    [27]
    杨艳坤, 王芬, 孙杨, 等. 不同溶氧对谷氨酸棒状杆菌代谢的影响[J]. 微生物学通报,2016,43(11):2540−2549. [YANG Y K, WANG F, SUN Y, et al. Effect of different dissolved oxygen concentrations on metabolism in Corynebacterium glutamicum[J]. Microbiology China,2016,43(11):2540−2549.
    [28]
    郝健, 王昌禄, 顾晓波, 等. 挡板三角瓶在好气微生物培养中的应用[J]. 无锡轻工大学学报,1999(5):177−179. [HAO J, WANG C L, GU X B, et al. Application of triangular flask in aerobic microorganism culture[J]. Journal of Wuxi University of Light Industry,1999(5):177−179.
    [29]
    YAMAMOTO S, SAKAI M, INUI M, et al. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives[J]. Applied Microbiology and Biotechnology,2011,90(3):1051−1061. doi: 10.1007/s00253-011-3144-3
    [30]
    TANG R, WENG C, PENG X, et al. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions[J]. Metabolic Engineering,2020,61:11−23. doi: 10.1016/j.ymben.2020.04.009
    [31]
    XU Y, LI Y, WU Z, et al. Combining precursor-directed engineering with modular designing: An effective strategy for de novo biosynthesis of l-DOPA in Bacillus licheniformis[J]. ACS Synthetic Biology,2022,11:700−712. doi: 10.1021/acssynbio.1c00411
    [32]
    OKOROKOV A L, BUKANOV N O, BESKROVNAIA O I, et al. Development of the vector-host system in Corynebacterium. Cloning and expression of homoserine dehydrogenase and homoserine kinase genes in Corynebacterium cells[J]. Genetika,1990,26(4):648−656.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (443) PDF downloads (42) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return