Citation: | GUO Qiushuang, BAO Qianqian, XU Yinbiao, et al. Metabolic Transformation and Fermentation Condition of L-homoserine Synthesis by Corynebacterium glutamicum[J]. Science and Technology of Food Industry, 2023, 44(3): 133−140. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030161. |
[1] |
HUANG J F, LIU Z Q, JIN L Q, et al. Metabolic engineering of Escherichia coli for microbial production of L-methionine[J]. Biotechnology and Bioengineering,2017,114(4):843−851. doi: 10.1002/bit.26198
|
[2] |
AREZKI N R, WILLIAMS A C, COBB J A, et al. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization[J]. International Journal of Cosmetic Science,2017,39(1):72−82. doi: 10.1111/ics.12351
|
[3] |
MIN L A , JI A , JG B , et al. Increasing L-homoserine production inEscherichia coli by engineering the central metabolic pathways[J]. Journal of Biotechnology,2020,s314−315:1−7.
|
[4] |
曾凡亮, 王宇, 杜升华, 等. 高丝氨酸的合成研究[J]. 精细化工中间体,2016,46(2):17−18, 21. [ZENG F L, WANG Y, DU S H, et al. Synthesis of homoserine[J]. Fine Chemical Intermediates,2016,46(2):17−18, 21. doi: 10.19342/j.cnki.issn.1009-9212.2016.02.004
|
[5] |
ARMSTRONG M D. The preparation of D- and L-homoserine[J]. Journal of the American Chemical Society,1948,70(5):1756−1759. doi: 10.1021/ja01185a025
|
[6] |
张博, 姚臻豪, 柳志强, 等. 代谢工程改造大肠杆菌生产L-高丝氨酸[J]. 生物工程学报,2021,37(4):1287−1297. [ZHANG B, YAO Z H, LIU Z Q, et al. Metabolic engineering of Escherichia coli for L-homoserine production[J]. Chinese Journal of Biotechnology,2021,37(4):1287−1297. doi: 10.13345/j.cjb.200434
|
[7] |
李华. 系统代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学, 2017
LI H. Systematic metabolic engineering of Escherichia coli for L-methionine production[D]. Wuxi: Jiangnan University, 2017.
|
[8] |
LI H, WANG B, ZHU L, et al. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine[J]. Journal of Industrial Microbiology & Biotechnology,2017,44(1):1975−1988.
|
[9] |
LIU P, ZHANG B, YAO Z H, et al. Multiplex design of metabolic network for production of L-homoserine in Escherichia coli[J]. Applied and Environmental Microbiology,2020,86(20):e01477.
|
[10] |
张宇, 夏利, 林蓓蓓, 等. 高效合成L-高丝氨酸大肠杆菌基因工程菌株的构建[J]. 食品科学,2022,43(6):81−88. [ZHANG Y, XIA L, LIN P P, et al. Construction of Escherichia coli chassis for efficient production of L-homoserine[J]. Food Science,2022,43(6):81−88. doi: 10.7506/spkx1002-6630-20210220-219
|
[11] |
李宁. 谷氨酸棒状杆菌合成O-乙酰-L-高丝氨酸关键代谢过程调控[D]. 无锡: 江南大学, 2020
LI N. Regulation of key metabolic processes to biosynthesize O-acetyL-L-homoserine in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2020.
|
[12] |
DELE-OSIBANJO T, LI Q, ZHANG X, et al. Growth-coupled evolution of phosphoketolase to improve L-glutamate production by Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology,2019,103(20):8413−8425. doi: 10.1007/s00253-019-10043-6
|
[13] |
VASSILEV I, GIEELMANN G, SCHWECHHEIMER S K, et al. Anodic electro-fermentation: Anaerobic production of L-lysine by recombinant Corynebacterium glutamicum[J]. Biotechnology and Bioengineering,2018,115(6):1499−1508. doi: 10.1002/bit.26562
|
[14] |
PLACHY J, ULBERT S, PELECHOVA J, et al. Fermentation production of L-homoserine by Corynebacterium sp. and its possible use in the preparation of threonine and lysine[J]. Folia Microbiologica,1985,30(6):485−492. doi: 10.1007/BF02927611
|
[15] |
LI N, XU S, DU G, et al. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux[J]. Biochemical Engineering Journal,2020,161:107665. doi: 10.1016/j.bej.2020.107665
|
[16] |
刘剑. 溶氧影响谷氨酸发酵代谢的机制及代谢通量分析[D]. 上海: 华东理工大学, 2012
LIU J. Metabolic mechanism of glutamic acid biosynthesis under different dissolved oxygen concentrations and its metabolic flux analysis[D]. Shanghai: East China University of Science and Technology, 2012.
|
[17] |
ZIMMERMANN H F, ANDERLEI T, JOCHEN B, et al. Oxygen limitation is a pitfall during screening for industrial strains[J]. Applied Microbiology and Biotechnology,2006,72(6):1157−1160. doi: 10.1007/s00253-006-0414-6
|
[18] |
张夙夙. 溶氧对氨基酸发酵的影响及其控制[J]. 安徽农学通报,2014,20(12):25−30. [ZHANG S S. Influence and control of dissolved oxygen on amino acid fermentation[J]. Anhui Agricultural Science Bulletin,2014,20(12):25−30. doi: 10.16377/j.cnki.issn1007-7731.2014.12.006
|
[19] |
李刚, 程度, 李宝健, 等. 利用高效CaCl2转化法实现质粒的共转化[J]. 生物技术,2003,13(6):31−33. [LI G, CHENG D, LI B J, et al. Co-transformation of plasmids by efficient CaCl2 transformation method[J]. Biotechnology,2003,13(6):31−33. doi: 10.3969/j.issn.1004-311X.2003.06.015
|
[20] |
孙杨. 谷氨酸棒状杆菌表达系统能量利用相关基因的挖掘和应用[D]. 无锡: 江南大学, 2018
SUN Y. Mining and application of energy utilizing related genes in favour of heterologous expression system of Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2018.
|
[21] |
谭延振. 谷氨酸棒状杆菌基因敲除系统的构建[D]. 无锡: 江南大学, 2012
TAN Y Z. Construction of gene deletion system in Corynebacterium glutamicum[D]. Wuxi: Jiangnan University, 2012.
|
[22] |
朱凯杰, 陆国权, 张迟. 响应面优化DNS测定还原糖方法[J]. 中国粮油学报,2019(6):2−113. [ZHU K J, LU G Q, ZHANG C. Optimization of the determination method of reducing sugar using response surface analysis[J]. Journal of the Chinese Cereals and Oils Association,2019(6):2−113.
|
[23] |
KINGSBURY J M, MCCUSKER J H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1) mutants[J]. Eukaryotic Cell,2010,9(5):717−728. doi: 10.1128/EC.00044-10
|
[24] |
KARKHANIS V A, MASCARENHAS A P, MARTINIS S A. Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing[J]. Journal of Bacteriology,2007,189(23):8765−8768. doi: 10.1128/JB.01215-07
|
[25] |
李昶志, 潘忠成, 翁婧, 等. 微生物发酵中溶氧浓度的控制研究[J]. 绿色科技,2019(6):2. [LI X Z, PAN Z C. WENG J, et al. Study on the control of dissolved oxygen concentration in microbial fermentation[J]. Journal of Green Science and Technol,2019(6):2. doi: 10.16663/j.cnki.lskj.2019.06.080
|
[26] |
王震. 谷氨酸棒状杆菌发酵生产L-精氨酸的溶氧条件优化[J]. 安徽农业科学,2019,47(7):120−123. [WANG Z. Optimization of dissolved oxygen conditions for Corynebacterium glutamicum producting L-arginine[J]. Journal of Anhui Agricultural Sciences,2019,47(7):120−123. doi: 10.3969/j.issn.0517-6611.2019.07.038
|
[27] |
杨艳坤, 王芬, 孙杨, 等. 不同溶氧对谷氨酸棒状杆菌代谢的影响[J]. 微生物学通报,2016,43(11):2540−2549. [YANG Y K, WANG F, SUN Y, et al. Effect of different dissolved oxygen concentrations on metabolism in Corynebacterium glutamicum[J]. Microbiology China,2016,43(11):2540−2549.
|
[28] |
郝健, 王昌禄, 顾晓波, 等. 挡板三角瓶在好气微生物培养中的应用[J]. 无锡轻工大学学报,1999(5):177−179. [HAO J, WANG C L, GU X B, et al. Application of triangular flask in aerobic microorganism culture[J]. Journal of Wuxi University of Light Industry,1999(5):177−179.
|
[29] |
YAMAMOTO S, SAKAI M, INUI M, et al. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives[J]. Applied Microbiology and Biotechnology,2011,90(3):1051−1061. doi: 10.1007/s00253-011-3144-3
|
[30] |
TANG R, WENG C, PENG X, et al. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions[J]. Metabolic Engineering,2020,61:11−23. doi: 10.1016/j.ymben.2020.04.009
|
[31] |
XU Y, LI Y, WU Z, et al. Combining precursor-directed engineering with modular designing: An effective strategy for de novo biosynthesis of l-DOPA in Bacillus licheniformis[J]. ACS Synthetic Biology,2022,11:700−712. doi: 10.1021/acssynbio.1c00411
|
[32] |
OKOROKOV A L, BUKANOV N O, BESKROVNAIA O I, et al. Development of the vector-host system in Corynebacterium. Cloning and expression of homoserine dehydrogenase and homoserine kinase genes in Corynebacterium cells[J]. Genetika,1990,26(4):648−656.
|