Citation: | LIU Tingting, PENG Wenting, PANG Shaojie, et al. Research Progress on Functional Activity and Utilization of Cereal Anthocyanins[J]. Science and Technology of Food Industry, 2023, 44(1): 447−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030103. |
[1] |
CALINOIU L F, VODNAR D C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability[J]. Nutrients,2018,10(11):1615. doi: 10.3390/nu10111615
|
[2] |
YE E Q, CHACKO S A, CHOU E L, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain[J]. Journal of Nutrition,2012,142(7):1304−1313. doi: 10.3945/jn.111.155325
|
[3] |
MEHMOOD A, ZHAO L, WANG Y, et al. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review[J]. Food Research International,2021,142:110180. doi: 10.1016/j.foodres.2021.110180
|
[4] |
FRANCAVILLA A, JOYE I J. Anthocyanins in whole grain cereals and their potential effect on health[J]. Nutrients,2020,12(10):2922. doi: 10.3390/nu12102922
|
[5] |
中国营养学会. 中国居民膳食营养素参考摄入量[M]. 北京: 科学出版社, 2013: 193−196.
Chinese Nutrition Society. Dietary nutrient reference intakes of Chinese residents[M]. Beijing: Science Press, 2013: 193−196.
|
[6] |
白卫滨, 朱翠娟, 胡云峰. 等. 花色苷对慢性疾病营养干预分子机制的研究进展[J]. 食品与生物技术学报,2016,35(10):1009−1019. [BAI W B, ZHU C J, HU Y F, et al. Advance in molecular mechanism of nutrition interventions of anthocyanins for chronic disease[J]. Journal of Food Science and Biotechnology,2016,35(10):1009−1019. doi: 10.3969/j.issn.1673-1689.2016.10.001
|
[7] |
SHAO Y, XU F, SUN X, et al. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.)[J]. Journal of Cereal Science,2014,59(2):211−218. doi: 10.1016/j.jcs.2014.01.004
|
[8] |
ZHU F. Anthocyanins in cereals: Composition and health effects[J]. Food Research International,2018,109:232−249. doi: 10.1016/j.foodres.2018.04.015
|
[9] |
张宽朝, 汪炜姿, 余平. 等. 黑豆种皮花色苷酶法辅助提取工艺优化及其抗氧化活性分析[J]. 天然产物研究与开发,2022,34(1):83−92. [ZHANG K Z, WANG Y Z, YU P, et al. Optimization of enzyme assisted extraction and antioxidant activity of anthocyanins from black bean seed coat[J]. Natural Product Research and Development,2022,34(1):83−92.
|
[10] |
GRAS C C, NEMETZ N, CARLE R, et al. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts[J]. Food Chemistry,2017,235:265−274. doi: 10.1016/j.foodchem.2017.04.169
|
[11] |
郭孝萱, 柳嘉, 陆雪娇. 等. 紫薯发酵前后总酚、总黄酮、花色苷、抗氧化性和抗癌作用比较[J]. 中国食品学报,2017,17(3):289−295. [GUO X X, LIU J, LU X J, et al. Comparison of total phenols, total flavonoids, anthocyanins, antioxidant activities and anticancer effects of purple potato before and after fermentation[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(3):289−295.
|
[12] |
由璐, 隋茜茜, 赵艳雪. 等. 花色苷分子结构修饰及其生理活性研究进展[J]. 食品科学,2019,40(11):351−359. [YOU L, SUI Q Q, ZHAO Y X, et al. Recent progress in structural modification and physiological activity of anthocyanins[J]. Food Science,2019,40(11):351−359. doi: 10.7506/spkx1002-6630-20180423-289
|
[13] |
ZHANG M W, ZHANG R F, ZHANG F X, et al. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties[J]. Journal of Agricultural and Food Chemistry,2010,58(13):7580−7587. doi: 10.1021/jf1007665
|
[14] |
YI J H, QIU M Y, ZHU Z B, et al. Robust and recyclable magnetic nanobiocatalysts for extraction of anthocyanin from black rice[J]. Food Chemistry,2021,364:130447. doi: 10.1016/j.foodchem.2021.130447
|
[15] |
CHEN M H, MCCLUNG A M, BERGMAN C J. Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors[J]. Journal of Cereal Science,2017,77:110−119. doi: 10.1016/j.jcs.2017.07.010
|
[16] |
ABDEL-AAL E S M, YOUNG J C, RABALSKI I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains[J]. Journal of Agricultural and Food Chemistry,2006,54(13):4696−4704. doi: 10.1021/jf0606609
|
[17] |
LIU Q, QIU Y, BETA T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds[J]. Journal of Agricultural and Food Chemistry,2010,58(16):9235−9241. doi: 10.1021/jf101700s
|
[18] |
ABDEL-AAL E S M, HUCL P, RABALSKI I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat[J]. Food Chemistry,2018,254:13−19. doi: 10.1016/j.foodchem.2018.01.170
|
[19] |
ABDEL-AAL E S M, ABOU-ARAB A A, TAMER G H, et al. Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties[J]. Journal of Agricultural and Food Chemistry,2008,56(23):11171−11177. doi: 10.1021/jf802168c
|
[20] |
GARG M, CHAWLA M, CHUNDURI V, et al. Transfer of grain colors to elite wheat cultivars and their characterization[J]. Journal of Cereal Science,2016,71:138−144. doi: 10.1016/j.jcs.2016.08.004
|
[21] |
SHARMA N, TIWARI V, VATS S, et al. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens[J]. Molecules (Basel, Switzerland),2020,25(24):5785. doi: 10.3390/molecules25245785
|
[22] |
HARAKOTR B, SURIHARN B, TANGTUONGCHAI R, et al. Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages[J]. Journal of Functional Foods,2014,9:109−118. doi: 10.1016/j.jff.2014.04.012
|
[23] |
ZILIC S, SERPEN A, AKILLIOGLU G, et al. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels[J]. Journal of Agricultural and Food Chemistry,2012,60(5):1224−1231. doi: 10.1021/jf204367z
|
[24] |
ZHANG Y Z, YIN L Q, HUANG L, et al. Composition, antioxidant activity, and neuroprotective effects of anthocyanin-rich extract from purple highland barley bran and its promotion on autophagy[J]. Food Chemistry,2021,339:127849. doi: 10.1016/j.foodchem.2020.127849
|
[25] |
DICZHAZI I, KURSINSZKI L. Anthocyanin content and composition in winter blue barley cultivars and lines[J]. Cereal Chemistry,2014,91(2):195−200. doi: 10.1094/CCHEM-05-13-0091-R
|
[26] |
KIM M J, HYUN J N, KIM J A, et al. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm[J]. Journal of Agricultural and Food Chemistry,2007,55(12):4802−4809. doi: 10.1021/jf0701943
|
[27] |
LEE C, HAN D, KIM B, et al. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars[J]. International Journal of Food Science & Technology,2013,48(5):984−991.
|
[28] |
DYKES L, PETERSON G C, ROONEY W L, et al. Flavonoid composition of red sorghum genotypes[J]. Food Chemistry,2009,116(1):313−317. doi: 10.1016/j.foodchem.2009.02.052
|
[29] |
KIM S J, MAEDA T, SARKER M Z, et al. Identification of anthocyanins in the sprouts of buckwheat[J]. Journal of Agricultural and Food Chemistry,2007,55(15):6314−6318. doi: 10.1021/jf0704716
|
[30] |
KOZłOWSKA A, DZIERŻANOWSKI T. Targeting inflammation by anthocyanins as the novel therapeutic potential for chronic diseases: An update[J]. Molecules,2021,26(14):4380. doi: 10.3390/molecules26144380
|
[31] |
TANCHAROEN S, SHAKYA P, NARKPINIT S, et al. Anthocyanins extracted from Oryza sativa L. prevent fluorouracil-induced nuclear factor-κB activation in oral mucositis: In vitro and in vivo studies[J]. International Journal of Molecular Sciences,2018,19(10):2981. doi: 10.3390/ijms19102981
|
[32] |
ZHAO L, ZHANG Y L, LIU G R, et al. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice[J]. Food & Function,2018,9(5):2796−2808.
|
[33] |
CHUNTAKARUK H, KONGTAWELERT P, POTHACHAROEN P. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling[J]. Scientific Reports,2021,11:1895. doi: 10.1038/s41598-021-81384-4
|
[34] |
LI B, CHENG Z, SUN Y X, et al. Lonicera caerulea L. polyphenols alleviate oxidative stress-induced intestinal environment imbalance and lipopolysaccharide-induced liver injury in HFD-fed rats by regulating the Nrf2/HO-1/NQO1 and MAPK pathways[J]. Molecular Nutrition & Food Research,2020,64(10):1901315.
|
[35] |
CAMPILLO-GIMENEZ L, RENAUDIN F, JALABERT M, et al. Inflammatory potential of four different phases of calcium pyrophosphate relies on NF-κB activation and MAPK pathways[J]. Frontiers in Immunology,2018,9:2248. doi: 10.3389/fimmu.2018.02248
|
[36] |
ZHANG Q Z, LUNA-VITAL D, MEJIA E G. Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-κB and JNK-dependent MAPK pathways[J]. Journal of Functional Foods,2019,54:175−186. doi: 10.1016/j.jff.2019.01.016
|
[37] |
WONGWICHAI T, TEEYAKASEM P, PRUKSAKORN D, et al. Anthocyanins and metabolites from purple rice inhibit IL-1β-induced matrix metalloproteinases expression in human articular chondrocytes through the NF-κB and ERK/MAPK pathway[J]. Biomedicine & Pharmacotherapy,2019,112:108610.
|
[38] |
ZHU Y, LING W, GUO H, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial[J]. Nutrition Metabolism and Cardiovascular Diseases,2013,23(9):843−849. doi: 10.1016/j.numecd.2012.06.005
|
[39] |
BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. BBA-Molecular Cell Research,2018,1865(5):721−733.
|
[40] |
WANG Y, HUO Y Z, ZHAO L, et al. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression[J]. Molecular Nutrition & Food Research,2016,60(7):1564−1577.
|
[41] |
常世敏, 李乾丽, 谢婵媛. 等. 黑米与欧洲越橘花色苷抗氧化活性比较研究[J]. 食品工业科技,2019,40(9):57−61, 67. [CHANG S M, LI Q L, XIE C Y, et al. Comparative study on antioxidant activity of anthocyanins from black rice and European bilberry[J]. Science and Technology of Food Industry,2019,40(9):57−61, 67.
|
[42] |
ARJINAJARN P, PONGCHAIDECHA A, CHUEAKULA N, et al. Riceberry bran extract prevents renal dysfunction and impaired renal organic anion transporter 3 (Oat3) function by modulating the PKC/Nrf2 pathway in gentamicin-induced nephrotoxicity in rats[J]. Phytomedicine,2016,23(14):1753−1763. doi: 10.1016/j.phymed.2016.10.014
|
[43] |
HUNTER J J, MORGAN J I, MERIGAN W H, et al. The susceptibility of the retina to photochemical damage from visible light[J]. Progress in Retinal and Eye Research,2012,31(1):28−42. doi: 10.1016/j.preteyeres.2011.11.001
|
[44] |
彭珍珍, 綦文涛, 王勇. 等. 花色苷对视网膜的保护作用及其机制研究进展[J]. 食品科学,2022,43(9):249−257. [PENG Z Z, QI W T, WANG Y, et al. Research progress in the protective effects of anthocyanins on the retina and its mechanism[J]. Food Science,2022,43(9):249−257.
|
[45] |
WANG Y, KIM H J, SPARROW J R. Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells[J]. Experimental Eye Research,2017,160:45−55. doi: 10.1016/j.exer.2017.04.010
|
[46] |
WANG Y, QI W T, HUO Y Z, et al. Cyanidin-3-glucoside attenuates 4-hydroxynonenal and visible light-induced retinal damage in vitro and in vivo[J]. Food & Function,2019,10(5):2871−2880.
|
[47] |
JIA H, CHEN W, YI X P, et al. Black rice anthocyanidins prevent retinal photochemical damage via involvement of the AP-1/NF-κB/Caspase-1 pathway in Sprague-Dawley rats[J]. Journal of Veterinary Science,2013,14(3):345−353. doi: 10.4142/jvs.2013.14.3.345
|
[48] |
TANAKA J, NAKANISHI T, OGAWA K, et al. Purple rice extract and anthocyanidins of the constituents protect against light-induced retinal damage in vitro and in vivo[J]. Journal of Agricultural and Food Chemistry,2011,59(2):528−536. doi: 10.1021/jf103186a
|
[49] |
NAKAISHI H, MATSUMOTO H, TOMINAGA S, et al. Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans[J]. Alternative Medicine Review: A Journal of Clinical Therapeutic,2000,5(6):553−562.
|
[50] |
SHARMA S, KHARE P, KUMAR A, et al. Anthocyanin-biofortified colored wheat prevents high fat diet-induced alterations in mice: Nutrigenomics studies[J]. Molecular Nutrition & Food Research,2020,64(13):1900999.
|
[51] |
SONG H Z, SHEN X C, ZHOU Y, et al. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice[J]. Food & Function,2021,12(20):10160−10170.
|
[52] |
WANG H, LIU D, JI Y L, et al. Dietary supplementation of black rice anthocyanin extract regulates cholesterol metabolism and improves gut microbiota dysbiosis in C57BL/6J mice fed a high-fat and cholesterol diet[J]. Molecular Nutrition & Food Research,2020,64(8):1900876.
|
[53] |
LIU D, JI Y L, ZHAO J, et al. Black rice (Oryza sativa L.) reduces obesity and improves lipid metabolism in C57BL/6J mice fed a high-fat diet[J]. Journal of Functional Foods,2020,64:103605. doi: 10.1016/j.jff.2019.103605
|
[54] |
LUNA-VITAL D, LUZARDO-OCAMPO I, CUELLAR-NUNEZ M L, et al. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways[J]. Journal of Nutritional Biochemistry,2020,79:108343. doi: 10.1016/j.jnutbio.2020.108343
|
[55] |
DING W, LIU H M, QIN Z Q, et al. Dietary antioxidant anthocyanins mitigate type II diabetes through improving the disorder of glycometabolism and insulin resistance[J]. Journal of Agricultural and Food Chemistry,2021,69(45):13350−13363. doi: 10.1021/acs.jafc.1c05630
|
[56] |
LUNA-VITAL D, MEJIA E G. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake[J]. Plos One,2018,13(7):e0200449. doi: 10.1371/journal.pone.0200449
|
[57] |
WEN H Y, ZHOU S Q, LI J P, et al. Nuciferine attenuates the progression of osteoarthritis by targeting PI3K/Akt/NF-κB signaling pathway[J]. Journal of Functional Foods,2021,86:104682. doi: 10.1016/j.jff.2021.104682
|
[58] |
HUANG P C, WANG G J, FAN M J, et al. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling[J]. Environmental Toxicology,2017,32(12):2471−2480. doi: 10.1002/tox.22460
|
[59] |
ZHENG H X, QI S S, HE J, et al. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor beta-1/smad expression[J]. Journal of Agricultural and Food Chemistry,2020,68(15):4399−4410. doi: 10.1021/acs.jafc.0c00680
|
[60] |
CHEN Y F, SHIBU M A, FAN M J, et al. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis[J]. The Journal of Nutritional Biochemistry,2016,31:98−105. doi: 10.1016/j.jnutbio.2015.12.020
|
[61] |
PETRONI K, TRINEI M, FORNARI M, et al. Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice[J]. Nutrition, Metabolism and Cardiovascular Diseases,2017,27(5):462−469. doi: 10.1016/j.numecd.2017.02.002
|
[62] |
WANG Q, HAN P H, ZHANG M W, et al. Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease[J]. Asia Pacific Journal of Clinical Nutrition,2007,16:295−301.
|
[63] |
杨丽嫔. 矢车菊素-3-O-葡萄糖苷的神经保护作用及其机理研究[D]. 南京: 南京财经大学, 2021
YANG L P. Neuroprotective activity of cyanidin-3-O-glucoside and its mechanism[D]. Nanjing: Nanjing University of Finance and Economics, 2021.
|
[64] |
KIRISATTAYAKUL W, WATTANATHORN J, IAMSAARD S, et al. Neuroprotective and memory-enhancing effect of the combined extract of purple waxy corn cob and pandan in ovariectomized rats[J]. Oxidative Medicine and Cellular Longevity,2017,2017:1−12.
|
[65] |
LEE A Y, CHOI J M, LEE Y A, et al. Beneficial effect of black rice (Oryza sativa L. var. japonica) extract on amyloid beta-induced cognitive dysfunction in a mouse model[J]. Experimental and Therapeutic Medicine,2020,20(5):64.
|
[66] |
TIKHONOVA M A, SHOEVA O Y, TENDITNIK M V, et al. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders[J]. Nutrients,2020,12(12):3877. doi: 10.3390/nu12123877
|
[67] |
LIU J Q, ZHOU H B, SONG L, et al. Anthocyanins: Promising natural products with diverse pharmacological activities[J]. Molecules (Basel, Switzerland),2021,26(13):3807. doi: 10.3390/molecules26133807
|
[68] |
DOKKAEW A, PUNVITTAYAGUL C, INSUAN O, et al. Protective effects of defatted sticky rice bran extracts on the early stages of hepatocarcinogenesis in rats[J]. Molecules,2019,24(11):2142. doi: 10.3390/molecules24112142
|
[69] |
MAZEWSKI C, LIANG K, MEJIA E G. Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro[J]. Journal of Functional Foods,2017,34:254−265. doi: 10.1016/j.jff.2017.04.038
|
[70] |
CHEN X Y, ZHOU J, LOU L P, et al. Black rice anthocyanins suppress metastasis of breast cancer cells by targeting RAS/RAF/MAPK pathway[J]. BioMed Research International,2015,2015:1−11.
|
[71] |
葛雨珺. 基于黑米花色苷的可视化活性包装构建及其在银鲳保鲜中的应用[D]. 杭州: 浙江大学, 2020
GE Y J. Development of a visual active packaging based on black rice bran anthocyanin and its application in preservation of silvery promfret[D]. Hangzhou: Zhejiang University, 2020.
|
[72] |
YONG H M, LIU J, QIN Y, et al. Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix[J]. International Journal of Biological Macromolecules,2019,137:307−316. doi: 10.1016/j.ijbiomac.2019.07.009
|
[73] |
WU C H, SUN J S, ZHENG P Y, et al. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring[J]. Carbohydrate Polymers,2019,222:115006. doi: 10.1016/j.carbpol.2019.115006
|
[74] |
QIN Y, LIU Y P, YUAN L M, et al. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract[J]. Food Hydrocolloids,2019,96:102−111. doi: 10.1016/j.foodhyd.2019.05.017
|
[75] |
ZHAO L, PAN F, MEHMOOD A, et al. Protective effect and mechanism of action of xanthan gum on the color stability of black rice anthocyanins in model beverage systems[J]. International Journal of Biological Macromolecules,2020,164:3800−3807. doi: 10.1016/j.ijbiomac.2020.09.027
|
[76] |
HAGGARD S, LUNA-VITAL D, WEST L, et al. Comparison of chemical, color stability, and phenolic composition from pericarp of nine colored corn unique varieties in a beverage model[J]. Food Research International,2018,105:286−297. doi: 10.1016/j.foodres.2017.11.038
|
[77] |
HAGGARD S, LUNA-VITAL D, WEST L, et al. Prospects for economical natural colorants: Insights from maize[J]. Theoretical and Applied Genetics,2019,132(11):2927−2946. doi: 10.1007/s00122-019-03414-0
|
[78] |
AKOGOU F U, KAYODE A P, BESTEN H M, et al. Extraction methods and food uses of a natural red colorant from dye sorghum[J]. Journal of the Science of Food and Agriculture,2018,98(1):361−368. doi: 10.1002/jsfa.8479
|
[79] |
陈璐. 黑米花青素片剂的制备工艺及质量标准研究[D]. 长春: 吉林大学, 2017
CHEN L. Studies on preparation technology and quality standard of black rice anthocyanin tablets[D]. Changchun: Jilin University, 2017.
|
[80] |
谢洁雯, 许斌, 左兰英. 等. 不同剂量花色苷补充改善血脂异常患者的血脂水平[J]. 营养学报,2020,42(2):122−129. [XIE J W, XU B, ZUO L Y, et al. Anthocyanin supplementation at different doses improves lipid profiles among individuals with dyslipidemia[J]. Acta Nutrimenta Sinica,2020,42(2):122−129. doi: 10.3969/j.issn.0512-7955.2020.02.005
|
[81] |
熊艳珍, 黄紫萱, 马慧琴. 等. 黑米的营养功能及综合利用研究进展[J]. 食品工业科技,2021,42(7):408−415. [XIONG Y Z, HUANG Z X, MA H Q, et al. Advanceson nutritional functions and comprehensive utilization of black (Pericarp) rice (Oryza sativa L.)[J]. Science and Technology of Food Industry,2021,42(7):408−415.
|
[82] |
VUGIC L, COLSON N, NIKBAKHT E, et al. Anthocyanin supplementation inhibits secretion of pro-inflammatory cytokines in overweight and obese individuals[J]. Journal of Functional Foods,2020,64:103596. doi: 10.1016/j.jff.2019.103596
|
[83] |
赵磊, 潘飞, 周娜. 等. 提高黑米花色苷颜色稳定性辅色剂的筛选及其作用机制[J]. 食品科学,2021,42(14):16−23. [ZHAO L, PAN F, ZHOU N, et al. Screening of co-pigments to improve color stability of black rice anthocyanins and underlying mechanism[J]. Food Science,2021,42(14):16−23. doi: 10.7506/spkx1002-6630-20200801-017
|
[84] |
潘飞, 赵磊, 陈艳麟. 等. 壳聚糖/γ-聚谷氨酸负载黑米花色苷纳米粒的制备、表征及缓释性能[J]. 食品科学,2021,42(10):38−44. [PAN F, ZHAO L, CHEN Y L, et al. Preparation, characterization and sustained release property of black rice anthocyanin-loaded chitsan/γ-polyglutamic acid nanoparticles[J]. Food Science,2021,42(10):38−44. doi: 10.7506/spkx1002-6630-20200410-139
|
[85] |
赵丽艳, 王磊, 任婷. 等. 黑米花色苷微胶囊的制备[J]. 食品研究与开发,2020,41(24):91−95. [ZHAO L Y, WANG L, REN T, et al. Development of black rice anthocyanin microcapsules[J]. Food Research and Development,2020,41(24):91−95. doi: 10.12161/j.issn.1005-6521.2020.24.015
|
[86] |
ZOU C, HUANG L, LI D H, et al. Assembling cyanidin-3-O-glucoside by using low-viscosity alginate to improve its in vitro bioaccessibility and in vivo bioavailability[J]. Food Chemistry,2021,355:129681. doi: 10.1016/j.foodchem.2021.129681
|