NIE Pan, LÜ Wei, LU Jun, et al. Optimization of Polyphenols and Flavonoids Enrichment Process of Quinoa-Black Oat Complexed Grain Fermented by Lactobacillus kisonensis[J]. Science and Technology of Food Industry, 2023, 44(1): 208−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030081.
Citation: NIE Pan, LÜ Wei, LU Jun, et al. Optimization of Polyphenols and Flavonoids Enrichment Process of Quinoa-Black Oat Complexed Grain Fermented by Lactobacillus kisonensis[J]. Science and Technology of Food Industry, 2023, 44(1): 208−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030081.

Optimization of Polyphenols and Flavonoids Enrichment Process of Quinoa-Black Oat Complexed Grain Fermented by Lactobacillus kisonensis

More Information
  • Received Date: March 07, 2022
  • Available Online: November 06, 2022
  • In present study, quinoa and black oat were complexed to fermented with Lactobacillus kisonensis (JCM15041) based on the contents of polyphenols and flavonoids as response values. To optimize the fermentation process, the single factor experiment was used to obtain the optimized range of fermentation parameters such as raw material ratio (quinoa: black oat), liquid to material ratio, inoculation amount and fermentation time, then the response surface experiment (four-factors and three-levels) was used to establish optimization fermentation condition. Our results showed that raw material ratio (quinoa: black oat), liquid-solid ratio, inoculation amount and fermentation time significantly affected the enrichment of polyphenols and flavonoids in complexed grain fermentation. The optimal fermentation conditions were as follows: raw material ratio (quinoa: black oat) 1:3.4 (g/g), liquid-solid ratio 7.5:1 (mL/g), inoculation amount 4.9%, fermentation time 36.5 h. Under these fermentation conditions, the contents of polyphenols and flavonoids were 295.3 and 256.3 mg/100 g, respectively, which were significantly higher than those of unfermented combined grain group (the contents of polyphenols and flavonoids were 216.2 and 202.4 mg/100 g, respectively) (P<0.05), and also higher than those of quinoa or black oat fermentation alone groups (polyphenols contents were 256.7 and 255.3 mg/100 g respectively, flavonoids content were 209.0 and 163.3 mg/100 g, respectively) (P<0.05). Compared with single grain fermentation, the fermentation of quinoa-black oat complexed grain with Lactobacillus kisonensis was more effective to the enrichment of polyphenols and flavonoids, and the fermentation products could be used for the development of functional grain food.
  • [1]
    游新勇, 崔利华, 周亚丽, 等. 响应面法优化藜麦种子中多酚提取工艺[J]. 食品工业,2020,41(10):118−122. [YOU X Y, CUI L H, ZHOU Y L, et al. The optimization of extraction process of quinoa seeds polyphenols by response surface methodology[J]. Food Industry,2020,41(10):118−122.
    [2]
    韩雅盟. 不同加工方式对藜麦酚类物质及其抗氧化活性的影响[D]. 太原: 山西大学, 2019.

    HAN Y M. Effect of different processes on phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.)[D]. Taiyuan: Shanxi University, 2019.
    [3]
    臧慧, 陈和, 陈健, 等. 黑大麦的营养价值及其开发利用前景[J]. 江苏农业科学,2012,40(3):13−14. [ZANG H, CHEN H, CHEN J, et al. Nutritional value of black barley and its development and utilization prospect[J]. Jiangsu Agricultural Sciences,2012,40(3):13−14. doi: 10.3969/j.issn.1002-1302.2012.03.005
    [4]
    刘瑞, 于章龙, 孙元琳, 等. 黑小麦芽抗氧化活性成分提取及其抗氧化能力研究[J]. 食品工业,2021,42(7):134−138. [LIU R, YU Z L, SUN Y L, et al. Extraction of antioxidant components from black wheat malt and its antioxidant capacity research[J]. Food Industry,2021,42(7):134−138.
    [5]
    孟蕾. 燕麦食品加工及功能特性研究进展分析[J]. 食品安全导刊,2018,4(6):119−120. [MENG L. Research progress of oat food processing and functional characteristics[J]. China Food Saftey Magazine,2018,4(6):119−120. doi: 10.16043/j.cnki.cfs.2018.06.091
    [6]
    PEREIRA E, ENCINA Z C, BARROS L, et al. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food[J]. Food chemistry,2019,280:110−114. doi: 10.1016/j.foodchem.2018.12.068
    [7]
    杨庆华, 张亚飞, 田晓静, 等. 谷物发酵产品的营养功能提升与益生功能研究进展[J/OL]. 食品与发酵工业, (2022-04-05) [2022-06-17]. https://doi.org/10.13995/j.cnki.11-1802/ts.031278.

    YANG Q H, ZHANG Y F, TIAN X J, et al. Research progress on the improvement of nutritional function and probiotic performance of grains fermented products[J/OL]. Food and Fermentation Industries, (2022-04-05) [2022-06-17]. https://doi.org/10.13995/j.cnki.11-1802/ts.031278.
    [8]
    俞德慧, 杨杨, 陈凤莲, 等. γ-氨基丁酸及其在谷物发酵食品中的研究进展[J]. 食品与发酵工业,2022,48(11):290−296. [YU D H, YANG Y, CHEN F L, et al. Research progress of γ-aminobutyric acid and its application in grains fermented food[J]. Food and Fermentation Industries,2022,48(11):290−296. doi: 10.13995/j.cnki.11-1802/ts.029113
    [9]
    RIZZELLO C G, LORUSSO A, RUSSO V, et al. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria[J]. International Journal of Food Microbiology,2017,241:252−261. doi: 10.1016/j.ijfoodmicro.2016.10.035
    [10]
    LI S, CHEN C, JI Y, et al. Improvement of nutritional value, bioactivity and volatile constituents of quinoa seeds by fermentation with Lactobacillus casei[J]. Journal of Grains Science,2018,84:83−89.
    [11]
    邢慧雅. 响应面法优化藜麦发酵浓浆发酵工艺研究[D]. 太原: 山西大学, 2019.

    XING H Y. Optimization of fermentation process of quinoa fermented thick pulp by response surface methodology[D]. Taiyuan: Shanxi University, 2019.
    [12]
    韩林, 杨人乙, 胡悦, 等. 藜麦发酵工艺优化及活性研究[J]. 食品与机械,2018,34(9):206−210, 215. [HAN L, YANG R Y, HU Y, et al. Optimization of fermentation technology and the activities of quinoa[J]. Food and Machinery,2018,34(9):206−210, 215. doi: 10.13652/j.issn.1003-5788.2018.09.041
    [13]
    崔江明, 周海龙, 马利华. 发芽、发酵对燕麦营养性及抗氧化性的影响[J]. 食品科技,2021,46(2):130−134. [CUI J M, ZHOU H L, MA L H. Effects of germination and fermentation on nutritional and antioxidant properties of oat[J]. Food Science and Technology,2021,46(2):130−134. doi: 10.13684/j.cnki.spkj.2021.02.020
    [14]
    刘燕. 双菌发酵燕麦改善多酚抗氧化活性及其体外消化特性[D]. 广州: 华南理工大学, 2019.

    LIU Y. Improving phenolic bioactivity in double-strain fermented oats and their characteristics in vitro digestion[D]. Guangzhou: South China University of Technology, 2019.
    [15]
    卢宇, 阿荣, 张园园, 等. 响应面法优化藜麦多酚提取工艺的研究[J]. 食品工业科技,2016,37(12):311−315, 344. [LU Y, A R, ZHANG Y Y, et al. Optimization of extraction technology of quinoa polyphenols by response surface methodology[J]. Science and Technology of Food Industry,2016,37(12):311−315, 344. doi: 10.13386/j.issn1002-0306.2016.12.050
    [16]
    董晶, 张焱, 曹赵茹, 等. 藜麦总黄酮的超声波法提取及抗氧化活性[J]. 江苏农业科学,2015,43(4):267−269. [DONG J, ZHANG Y, CAO Z R, et al. Ultrasonic extraction and antioxidant activity of total flavonoids from quinoa (Chenopodium quinoa Willd.)[J]. Jiangsu Agricultural Sciences,2015,43(4):267−269. doi: 10.15889/j.issn.1002-1302.2015.04.097
    [17]
    李幸. 冠突散囊菌发酵绿茶莓茶潜在体外降尿酸活性的研究[D]. 长沙: 湖南农业大学, 2020.

    LI X. Study on the potential in vitro uric acid reducing activity of green tea and berry tea fermented by Eurotium cristatum[D]. Changsha: Agricultural University of Hunan, 2020.
    [18]
    马茹男. 姬松茸固态发酵对谷物多酚的影响[D]. 太原: 山西大学, 2018.

    MA R N. Effect of solid-state fermentation with Agaricus blazei on polyphenols of grains[D]. Taiyuan: Shanxi University, 2018.
    [19]
    牛丽亚, 刘宛玲, 肖建辉, 等. 黑曲霉发酵法提取麦胚黄酮工艺的研究[J]. 食品工业,2015,36(11):1−3. [NIU Y L, LIU W L, XIAO J H, et al. Wheat germ flavonoids extracted by fermetation with Aspergillus[J]. Food Industry,2015,36(11):1−3.
    [20]
    任雪荣, 齐景伟, 刘娜, 等. 微生物发酵对麦麸水溶性多酚含量、组成及抗氧化活性的影响研究[J]. 食品工业科技,2020,41(3):104−109. [REN X R, QI J W, LIU N, et al. Effect of microbial fermentation on content, composition and antioxidant activity of water-soluble polyphenols in wheat bran[J]. Science and Technology of Food Industry,2020,41(3):104−109. doi: 10.13386/j.issn1002-0306.2020.03.019
    [21]
    李玲玲, 刘雪, 邱泽天, 等. 植物多酚的微生物合成[J]. 生物工程学报,2021,37(6):2050−2076. [LI L L, LIU X, QIU Z T, et al. Microbial synthesis of plant polyphenols[J]. Chinses Journal of Biotechology,2021,37(6):2050−2076. doi: 10.13345/j.cjb.200747
    [22]
    张慧芸, 陈俊亮, 康怀彬. 发酵对几种谷物提取物总酚及抗氧化活性的影响[J]. 食品科学,2014,35(11):195−199. [ZHANG H Y, CHEN J L, KANG H B. Effect of fermentation on total polyphenol content and antioxidant activity of grains extract[J]. Food Science,2014,35(11):195−199. doi: 10.7506/spkx1002-6630-201411039
    [23]
    KATINA K, LAITILA A, JUVONEN R, et al. Bran fermentation as a means to enhance technological properties and bioactivity of rye[J]. Food Microbiology,2007,24(2):175−186. doi: 10.1016/j.fm.2006.07.012
    [24]
    LOPONEN J, MIKOLA M, KATINA K, et al. Degradation of HMW glutenins during wheat sourdough fermentations[J]. Grains Chemistry,2004,81(1):87−93.
    [25]
    李明松. 乳酸菌发酵大麦提取物的制备及其降脂活性研究[D]. 镇江: 江苏大学, 2017.

    LI M S. The preparation technology and anti-obesity activity of fermented barley extracts with lactic acid bacteria[D]. Zhenjiang: Jiangsu University, 2017.
    [26]
    刘善鑫, 刘素纯, 李再贵. 冠突散囊菌对燕麦黄酮含量的影响[J]. 中国酿造,2019,38(2):93−97. [LIU S X, LIU S C, LI Z G. Effect of Eurotium cristatum on flavones content in oat[J]. China Brewing,2019,38(2):93−97. doi: 10.11882/j.issn.0254-5071.2019.02.018
    [27]
    孙淑夷. 荔枝汁混菌发酵工艺及其功能活性成分研究[D]. 广州: 华南农业大学, 2016.

    SUN S Y. The research of technology and functional active ingredients for litchi juice mixed strains fermentation[D]. Guangzhou: South China Agricultural University, 2016.
    [28]
    王猛, 郭静, 陆俊. 乳酸菌发酵对有色米多酚含量及其抗氧化活性影响研究[J]. 粮食与油脂,2021,34(8):43−47. [WANG M, GUO J, LU J. The effect on polyphenols content and antioxidant activity of pigmented rice by lactic acid bacteria fermentation[J]. Grainss and Oils,2021,34(8):43−47. doi: 10.3969/j.issn.1008-9578.2021.08.012
    [29]
    DULF F V, VODNAR D C, SOCACIU C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products[J]. Food Chemistry,2016,209:27−36. doi: 10.1016/j.foodchem.2016.04.016
    [30]
    ZHANG Z P, MA J, HE Y Y, et al. Antioxidant and hypoglycemic effects of Diospyros lotus fruit fermented with Microbacterium flavum and Lactobacillus plantarum[J]. Journal of Bioscience and Bioengineering,2018,125(6):682−687. doi: 10.1016/j.jbiosc.2018.01.005
    [31]
    孙盈乾. 固态发酵提高紫麦麸皮抗氧化性能的研究[D]. 泰安: 山东农业大学, 2014.

    SUN Y Q. Effects of solid-state fermentation on the antioxidant properties of purple wheat bran[D]. Taian: Shandong Agricultural University, 2014.
  • Cited by

    Periodical cited type(9)

    1. 孙喜,王召路,贾谨睿,王梦洋,孙润卓,王鹏,史新娥. 虫草素及其在生猪养殖中的应用. 畜牧兽医杂志. 2024(04): 1-7 .
    2. 池杰明. 虫草素抗肿瘤新型给药系统研究进展. 中外医疗. 2024(35): 195-198 .
    3. 卢茂芳,李薇,李小兰,唐湘黔,李柯. RP-HPLC双波长法同时测定参橘草营养强化饮液中5种成分的含量. 湖南中医杂志. 2023(03): 182-186 .
    4. 冯辽辽,马一翔,刘广平,黄琰莹,刘萱,贺晓龙. 北虫草菌糠中多糖的提取及成分测定. 延安大学学报(自然科学版). 2023(03): 29-34 .
    5. 宋羚,田迪,黄蓉,刘新会,罗家兴,马啸. 虫草素对肺癌细胞生长及迁移的影响. 菌物学报. 2022(07): 1088-1098 .
    6. 张鑫,周雪冰,高铭,吕游,王莹,杨春宇,朴英实,任香善. 虫草素通过激活AMPK和MAPK信号通路抑制脂代谢抑制人胃癌细胞的增殖和迁移. 细胞与分子免疫学杂志. 2022(06): 513-521 .
    7. 盛瑜,谭超杰,白丽丹,孙晶波,安丽萍,郭笑. 北虫草化学成分及药理作用研究进展. 中国食用菌. 2021(02): 1-5+22 .
    8. 徐悉哲,王言之,李世芬,胡奇,王玉邦. 蛹虫草对小鼠免疫功能的调节作用. 江苏医药. 2021(07): 661-663 .
    9. 蔡曦,尚超,孟丽荣. 虫草素抗肿瘤药理作用及其机制的研究进展. 药物评价研究. 2021(07): 1548-1554 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (424) PDF downloads (27) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return