WANG Lihong, WANG Tianyu, YANG Li, et al. Investigation on the Hypoglycemic Effect of Aronia melanocarpa Fruit and Its Effect on Lipid Metabolism[J]. Science and Technology of Food Industry, 2023, 44(2): 386−392. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030066.
Citation: WANG Lihong, WANG Tianyu, YANG Li, et al. Investigation on the Hypoglycemic Effect of Aronia melanocarpa Fruit and Its Effect on Lipid Metabolism[J]. Science and Technology of Food Industry, 2023, 44(2): 386−392. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030066.

Investigation on the Hypoglycemic Effect of Aronia melanocarpa Fruit and Its Effect on Lipid Metabolism

More Information
  • Received Date: March 06, 2022
  • Available Online: November 16, 2022
  • Objective: To investigate the hypoglycemic effect of Aronia melanocarpa fruit (AMF) and its effect on lipid metabolism. Methods: Use streptozotocin (STZ) to induce the type 2 diabetes mellitus (T2DM) mouse model. The models were randomly divided into 7 groups: The model group, the metformin hydrochloride group (40 mg/kg·bw), the AMF total flavonoids groups (75, 150, 300 mg/kg·bw) and the AMF juice group (10 mL/kg·bw), and the blank control group. This study detected the effects of each group on the physiological indices, water intake, food intake, organ index and fasting blood glucose values of the T2DM mice, tested the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), malondialdehyde (MDA) and superoxide dismutase (SOD), and performed pathological observations on the liver and pancreas tissues of the mice. Results: All the AMF total flavonoids groups and juice group had significant hypoglycemic effects on STZ-induced T2DM mice (P<0.05), their organ index and TG, TC, LDL-C, HDL-C, MDA, SOD levels (P<0.05) were reduced, and pancreatic and liver tissues were repaired. The AMF total flavonoid group could significantly improve the symptoms called "three polys and one loss" (polyuria, polydipsia, and polyphagia and weight loss) in T2DM mice (P<0.05). The AMF total flavonoids group had the best effect at high dose. Conclusion: AMF has the efficacy of hypoglycemia, hypolipidemia and repair of pancreatic and liver damage in STZ-induced T2DM mice, and the mechanism might be related to its regulation of oxidative stress.
  • [1]
    陈妍竹, 胡文忠, 姜爱丽, 等. 黑果腺肋花楸功能作用及食品加工研究进展[J]. 食品工业科技,2016,37(9):397−400. [CHEN Y Z, HU W Z, JIANG A L, et al. Research progress on the functional effects and food processing of Aronia melanocarpa[J]. Science and Technology of Food Industry,2016,37(9):397−400. doi: 10.13386/j.issn1002-0306.2016.09.071
    [2]
    刘丽娜. 浅谈发展黑果腺肋花楸的价值、问题与对策[J]. 防护林科技,2019(2):75−77. [LIU L N. Value, problems and countermeasures of developing Aronia melanocarpa[J]. Protection Forest Science and Technology,2019(2):75−77.
    [3]
    罗猛. 黑果花楸丰产栽培技术[J]. 北方果树,2018(5):33−34. [LUO M. Aronia melanocarpa productive cultivation technology[J]. Northern Fruit Trees,2018(5):33−34.
    [4]
    王朝辉. 富康源黑果花楸栽培技术[J]. 新农业,2015(3):36−38. [WANG C H. Fukangyuan Aronia melanocarpa cultivation technology[J]. New Agriculture,2015(3):36−38.
    [5]
    MAYERMIEBACH E, ADAMIUK M, BEHSNILIAN D. Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product[J]. Agriculture,2012,2(3):244−258. doi: 10.3390/agriculture2030244
    [6]
    张衡锋, 汤庚国. 黑果腺肋花楸的植物学研究进展[J]. 天津农业科学,2018,24(6):5−9. [ZHANG H F, TANG G G. Progress in the botanical study of Aronia melanocarpa[J]. Tianjin Agricultural Science,2018,24(6):5−9. doi: 10.3969/j.issn.1006-6500.2018.06.002
    [7]
    张成霞, 韦庆翠, 徐秀琴, 等. 黑果腺肋花楸在泰州地区引种栽培适应性研究[J]. 湖南农业科学,2020(1):7−10. [ZHANG C X, WEI Q C, XU X Q, et al. Study on the adaptability of introducing cultivation of Aronia melanocarpa in Taizhou area[J]. Hunan Agricultural Science,2020(1):7−10.
    [8]
    隋韶奕, 张素敏, 王雪松, 等. 黑果腺肋花楸-雪莲果混合型果酒酿造工艺研究[J]. 农业科技与装备,2020(2):45−47. [SUI S Y, ZHANG S M, WANG X S, et al. Research on the brewing process of Aronia melanocarpa-snow lily fruit mixed fruit wine[J]. Agricultural Technology and Equipment,2020(2):45−47.
    [9]
    王凤, 王凤舞, 陈昕昕, 等. 黑果腺肋花楸脱涩及果酱的生产加工工艺[J]. 食品科技,2018,43(6):120−125. [WANG F, WANG F W, CHEN X X, et al. Processing of Aronia melanocarpa for astringency removal and jam production[J]. Food Science and Technology,2018,43(6):120−125.
    [10]
    杨舒乔, 王迪, 高彦祥. 黑果腺肋花楸功能性研究进展及其应用[J]. 食品研究与开发,2021,42(13):206−213. [YANG S Q, WANG D, GAO Y X. Advances in studies on the function and application of Aronia melanocarpa[J]. Food Research and Development,2021,42(13):206−213. doi: 10.12161/j.issn.1005-6521.2021.13.030
    [11]
    SHIRAKAWA J, TERAUCHI Y. Newer perspective on the coupling between glucose-mediated signaling and β-cell functionality[J]. Endocrine Journal,2020,67(1):1−8. doi: 10.1507/endocrj.EJ19-0335
    [12]
    范强, 杨丽霞, 薛燕芳, 等. 2型糖尿病氧化应激与单味中药干预研究[J]. 时珍国医国药,2017,28(7):1718−1721. [FAN Q, YANG L X, XUE Y F, et al. Study on oxidative stress and single herbal intervention in type 2 diabetes[J]. Lishizhen Medicine and Materia Medica Research,2017,28(7):1718−1721.
    [13]
    TAKAHASHI A, SHIMIZU H, OKAZAKI Y, et al. Anthocyaninrich phytochemicals from aronia fruits inhibit visceral fat accumulation and hyperglycemia in high-fat diet-induced dietary obese rats[J]. Journal of Oleo Science,2015,64(12):1243−1250. doi: 10.5650/jos.ess15181
    [14]
    KOBUS Z, R N, WILCZYŃSKI K, et al. Effect of the black chokeberry (Aronia melanocarpa (Michx.) Elliott) juice acquisition method on the content of polyphenols and antioxidant activity[J]. PLoS One,2019,14(7):e0219585. doi: 10.1371/journal.pone.0219585
    [15]
    CAMPBELL J E, NEWGARD C B. Mechanisms controlling pancreatic islet cell function in insulin secretion[J]. Nature Reviews Molecular Cell Biology,2021,48:1−17.
    [16]
    殷圆, 陆而立. 中医治疗特殊性糖尿病的研究进展[J]. 现代临床医学,2022,48(2):135−136, 148. [YIN Y, LU E L. Research progress of Chinese medicine in the treatment of specific diabetes mellitus[J]. Modern Clinical Medicine,2022,48(2):135−136, 148. doi: 10.11851/j.issn.1673-1557.2022.02.017
    [17]
    RANDERIA S N, GREIG J A, THOMSON, et al. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation[J]. Cardiovascular Diabetology,2019,18(72):1−15.
    [18]
    金斐, 朱丽云, 高永生, 等. 植物源活性成分降血糖作用及其机理研究进展[J]. 食品科学,2021,42(21):322−330. [JIN F, ZHU L Y, GAO Y S, et al. Advances in hypoglycemic effects of plant-derived active ingredients and their mechanisms[J]. Food Science,2021,42(21):322−330.
    [19]
    PRETORIUS E, BESTER J, VERMEULEN N, et al. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: Implications for diagnostics[J]. Cardiovascular Diabetology,2017,14(1):30.
    [20]
    文培华, 颜怡冰, 王文君, 等. 虎耳草总黄酮含量测定及其抗氧化性[J]. 食品工业,2022,43(2):315−319. [WEN P H, YAN Y B, WANG W J, et al. Determination of the total flavonoid content and antioxidant properties of Euphorbia tigris[J]. Food Industry,2022,43(2):315−319.
    [21]
    DING Y, XU T, MAO G, et al. Di-(2-ethylhexyl) phthalate-induced hepatotoxicity exacerbated type 2 diabetes mellitus (T2DM) in female pubertal T2DM mice[J]. Food and Chemical Toxicology,2021(24):112003.
    [22]
    孙宏莱, 刘悦, 刘德江, 等. 毛水苏多糖对糖尿病小鼠肾脏的保护作用[J]. 食品工业科技,2021,42(17):373−380. [SUN H L, LIU Y, LIU D J, et al. Protective effect of trichosan on the kidney of diabetic mice[J]. Science and Technology of Food Industry,2021,42(17):373−380.
    [23]
    李海云. 芪蛭降糖片对大鼠糖尿病综合症的防治作用[D]. 开封: 河南大学, 2019

    LI H Y. Prevention and treatment of diabetes mellitus syndrome in rats by Astragalus vermicularis hypoglycemic tablets[D]. Kaifeng: Henan University, 2019.
    [24]
    王云威. 铁皮石斛多糖及复方剂对糖尿病小鼠降糖研究[D]. 太原: 山西大学, 2020

    WANG Y W. Study on hypoglycemia of Dendrobium ironbark polysaccharide and compounding agents in diabetic mice[D]. Taiyuan: Shanxi University, 2020.
    [25]
    刘迪迪, 邱军强, 张华, 等. 红松松仁提取物对糖尿病小鼠的降血糖活性[J]. 中国食品学报,2019,19(7):20−28. [LIU D D, QIU J Q, ZHANG H, et al. Hypoglycemic activity of the extracts from korean pine nut on diabetic mice[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(7):20−28. doi: 10.16429/j.1009-7848.2019.07.003
    [26]
    陈丽莉, 刘月, 牛晓琪, 等. 黑树莓多酚对糖尿病小鼠血糖代谢的调控作用及机制研究[J]. 中草药,2021,52(17):5258−5266. [CHEN L L, LIU Y, NIU X Q, et al. Study on the regulatory effect and mechanism of black raspberry polyphenols on blood glucose metabolism in diabetic mice[J]. Chinese Herbal Medicine,2021,52(17):5258−5266. doi: 10.7501/j.issn.0253-2670.2021.17.018
    [27]
    徐立, 胡瑞斌, 李兆波, 等. STZ诱导糖尿病大鼠胰腺及肝脏石蜡切片HE染色改进方法[J]. 临床与实验病理学杂志,2019,35(9):1122−1124. [XU L, HU R B, LI Z B, et al. Improved HE staining of paraffin sections of pancreas and liver in STZ-induced diabetic rats[J]. Journal of Clinical and Experimental Pathology,2019,35(9):1122−1124.
    [28]
    WORSZTYNOWICZ P, MARTA NAPIERAŁA, A W B, et al. Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.)[J]. Process Biochemistry,2014,49(9):1457−1463. doi: 10.1016/j.procbio.2014.06.002
    [29]
    MU J, XIN G, ZHANG B, et al. Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats[J]. Journal of Food Science,2020,85(4):1307−1318. doi: 10.1111/1750-3841.15109
    [30]
    景怡, 景荣琴, 胡天惠. 玉米须总黄酮对糖尿病高脂血症大鼠血脂、血糖水平的影响及抗氧化作用[J]. 中药药理与临床,2011,27(2):85−86. [JING Y, JING R Q, HU T H. Effects of total flavonoids of corn mullein on blood lipid and blood glucose levels and antioxidant effects in diabetic hyperlipidemic rats[J]. Chinese Pharmacology and Clinical Practice,2011,27(2):85−86.
  • Cited by

    Periodical cited type(1)

    1. 杨丽娟,王伟伟,许勇泉,江和源. 外源酶在红茶加工中的应用研究进展. 食品工业科技. 2024(07): 344-351 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (300) PDF downloads (26) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return