Citation: | XU Wanying, QI Xiaoxue, XU Ying, et al. Study on Improving the Cadmium Removal Ability of Recombinant Pichia kudriavzevii M48 Overexpressed MET14 Gene Based on Medium Optimization[J]. Science and Technology of Food Industry, 2022, 43(19): 288−297. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020182. |
[1] |
李旭东, 么鸿雁, 阚坚力, 等. IARC公布的化学物质和混合物及暴露环境对人类致癌性的综合评价[J]. 环境与健康杂志,2008,25(12):1107−1110. [LI X D, YAO H Y, KAN J L, et al. Comprehensive evaluation of carcinogenicity of chemical substances, mixtures and exposure environment to humans published by IARC[J]. Journal of Environment and Health,2008,25(12):1107−1110. doi: 10.3969/j.issn.1001-5914.2008.12.037
LI X D, YAO H Y, KAN J L, et al. Comprehensive evaluation of carcinogenicity of chemical substances, mixtures and exposure environment to humans published by IARC[J]. Journal of Environment and Health, 2008, 25(12): 1107-1110. doi: 10.3969/j.issn.1001-5914.2008.12.037
|
[2] |
THANG N Q, HUY B T, KHANH D N N, et al. Potential health risks of toxic heavy metals and nitrate via commonly consumed bivalve and vegetable species in Ho Chi Minh City, Vietnam[J]. Environment Science and Pollution Research,2021,28(39):54960−54971. doi: 10.1007/s11356-021-14808-3
|
[3] |
ANYANWU B O, ORISH C N, EZEJIOFOR A N, et al. Neuroprotective effect of Costus afer on low dose heavy metal mixture (lead, cadmium and mercury) induced neurotoxicity via antioxidant, anti-inflammatory activities[J]. Toxicology Reports,2020,7:1032−1038. doi: 10.1016/j.toxrep.2020.08.008
|
[4] |
NASTASESCU V, MITITELU M, GOUMENOU M, et al. Heavy metal and pesticide levels in dairy products: Evaluation of human health risk[J]. Food and Chemical Toxicology,2020,146:111844. doi: 10.1016/j.fct.2020.111844
|
[5] |
宋小旺. 铁锰氧化物生物炭吸附/钝化镉研究[D]. 广州: 广东工业大学, 2020.
SONG X W. Adsorption/passivation of cadmium by Fe-Mn oxide-biochar [D]. Guangzhou: Guangdong University of Technology, 2020.
|
[6] |
MADDELA N R, KAKARLA D, GARCIA L C, et al. Cocoa-laden cadmium threatens human health and cacao economy: A critical view[J]. Science of the Total Environment,2020,720:137645. doi: 10.1016/j.scitotenv.2020.137645
|
[7] |
田甜, 巫剑, 文金华, 等. 广西北部湾鲜活水产品中镉污染的膳食暴露风险评估[J]. 现代食品科技,2021,37(11):372−378,174. [TIAN T, WU J, WEN J H, et al. Assessment of dietary exposure to cadmium from fresh aquatic products from the Gulf of Tonkin, Guangxi[J]. Modern Food Science and Technology,2021,37(11):372−378,174. doi: 10.13982/j.mfst.1673-9078.2021.11.0199
TIAN T, WU J, WEN J H, et al. Assessment of dietary exposure to cadmium from fresh aquatic products from the Gulf of Tonkin, Guangxi[J]. Modern Food Science and Technology, 2021, 37(11): 372-378, 174. doi: 10.13982/j.mfst.1673-9078.2021.11.0199
|
[8] |
MA N, LI C S, ZHANG D D, et al. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation[J]. Journal of Basic Microbiology,2016,56(7):711−718. doi: 10.1002/jobm.201500555
|
[9] |
CHELLIAH R, RAMAKRISHNAN S R, PRABHU P R, et al. Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter[J]. Yeast (Chichester, England),2016,33(8):385−401. doi: 10.1002/yea.3181
|
[10] |
XU D, YIN Y, ALI B, et al. Isolation of yeast strains from Chinese liquor Daqu and its use in the wheat sourdough bread making[J]. Food Bioscience,2019,31(C):100443.
|
[11] |
李春生. 库德毕赤酵母重金属积累特性及高盐/低pH下镉抗性提高机理研究[D]. 青岛: 中国海洋大学, 2015.
LI C S. Heavy metal bioaccumulation characteristics and mechanism of the improved cadmium tolerance at high NaCl concentration or low pH in Pichia kudriavzevii[D]. Qingdao: Ocean University of China, 2015.
|
[12] |
张丹丹. 基于转录组学研究MET14/GST基因在提高库德毕赤酵母镉抗性中的作用[D]. 青岛: 中国海洋大学, 2020.
ZHANG D D. Role of MET14/GST gene in improving cadmium resistance of Pichia kudriavzevii A16 based on RNA-Seq[D]. Qingdao: Ocean University of China, 2020.
|
[13] |
MAKOWSKI K, MATUSIAK K, BOROWSKI S, et al. Optimization of a culture medium using the Taguchi approach for the production of microorganisms active in odorous compound removal[J]. Applied Sciences,2017,7(8):756. doi: 10.3390/app7080756
|
[14] |
BLAZEJAK S, DUSZKIEWICZ-REINHARD W, GNIEWOSZ M, et al. Impact of magnesium and mannose in the cultivation media on the magnesium biosorption, the biomass yield and on the cell wall structure of Candida utilis yeast[J]. European Food Research and Technology,2008,227(3):695−700. doi: 10.1007/s00217-007-0774-x
|
[15] |
黄章娆, 王昱, 崔沛杰, 等. 响应面法优化富锌酵母培养条件[J]. 中国酿造,2020,39(11):97−102. [HUANG Z R, WANG Y, CUI P J, et al. Optimization of culture conditions for zinc-enriched yeast by response surface methodology[J]. China Brewing,2020,39(11):97−102. doi: 10.11882/j.issn.0254-5071.2020.11.019
HUANG Z R, WANG Y, CUI P J, et al. Optimization of culture conditions for zinc-enriched yeast by response surface methodology[J]. China Brewing, 2020, 39(11): 97-102. doi: 10.11882/j.issn.0254-5071.2020.11.019
|
[16] |
FATHOLLAHI A, COUPE S J. Effect of environmental and nutritional conditions on the formation of single and mixed-species biofilms and their efficiency in cadmium removal[J]. Chemosphere,2021,283:131152. doi: 10.1016/j.chemosphere.2021.131152
|
[17] |
陈文明, 郑国斌, 姚娟, 等. 高产RNA酿酒酵母培养条件及发酵培养基的优化[J]. 中国调味品,2015,40(11):28−32. [CHEN W M, ZHENG G B, YAO J, et al. Optimization of culture conditions and fermentation medium of Saccharomyces cerevisiae of high-yield RNA[J]. China Condiment,2015,40(11):28−32. doi: 10.3969/j.issn.1000-9973.2015.11.007
CHEN W M, ZHENG G B, YAO J, et al. Optimization of culture conditions and fermentation medium of Saccharomyces cerevisiae of high-yield RNA[J]. China Condiment, 2015, 40(11): 28-32. doi: 10.3969/j.issn.1000-9973.2015.11.007
|
[18] |
李晓丹, 夏冰, 汪仁. 重组酿酒酵母磷酸胆碱胞苷转移酶(CCT酶)基因的工程菌稳定性研究[J]. 江苏农业科学,2015,43(5):49−50,69. [LI X D, XIA B, WANG R. Stability of recombinant Saccharomyces cerevisiae choline phosphate cytidine transferase (CCT) gene[J]. Jiangsu Agricultural Sciences,2015,43(5):49−50,69.
LI X D, XIA B, WANG R. Stability of recombinant Saccharomyces cerevisiae choline phosphate cytidine transferase (CCT) gene[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 49-50, 69.
|
[19] |
ALVAREZ-CAO M E, CERDAN M E, GONZALEZ-SISO M I, et al. Bioconversion of beet molasses to alpha-galactosidase and ethanol[J]. Frontiers in Microbiology,2019,10:405. doi: 10.3389/fmicb.2019.00405
|
[20] |
YAO J, XU H, SHI N N, et al. Analysis of carbon metabolism and improvement of gamma-polyglutamic acid production from Bacillus subtilis NX-2[J]. Applied Biochemistry and Biotechnology,2010,160(8):2332−2341. doi: 10.1007/s12010-009-8798-2
|
[21] |
GUO X N, HE X X, ZHANG L B, et al. Enhancement of copper uptake of yeast through systematic optimization of medium and the cultivation process of Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology,2022,194:1857−1870.
|
[22] |
LI C, GAO S, WANG H M, et al. Succinic acid production using a glycerol-based medium by an engineered strain of Yarrowia lipolytica: Statistical optimization and preliminary economic feasibility study[J]. Biochemical Engineering Journal,2018,137:305−313. doi: 10.1016/j.bej.2018.06.012
|
[23] |
杜丽红, 郝亚男, 陈宁, 等. 有机氮源及其在微生物发酵中的应用[J]. 发酵科技通讯,2019,48(1):1−4. [DU L H, HAO Y N, CHEN N, et al. Organic nitrogen source and their applications in microbial fermentation[J]. Bulletin of Fermentation Science and Technology,2019,48(1):1−4.
DU L H, HAO Y N, CHEN N, et al. Organic nitrogen source and their applications in microbial fermentation[J]. Bulletin of Fermentation Science and Technology, 2019, 48(1): 1-4.
|
[24] |
CHOI G H, LEE N K, PAIK H D. Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology[J]. Journal of Microbiology and Biotechnology,2021,31(5):717−725. doi: 10.4014/jmb.2103.03018
|
[25] |
王敏. 产乳糖酶基因工程菌的构建及发酵条件优化[D]. 南阳: 南阳师范学院, 2019.
WANG M. Construction of lactase producing gene engineering strain and optimization of fermentation conditions[D]. Nanyang: Nanyang Normal University, 2019.
|
[26] |
章小毛. 发酵工艺优化提高酿酒酵母cAMP产量的初步研究[D]. 天津: 天津大学, 2020.
ZHANG X M. Preliminary fermentation process optimization to improve cAMP yield of Saccharomyces cerevisiae[D]. Tianjin: Tianjin University, 2020.
|
[27] |
PLANES M D, NINOLES R, RUBIO L, et al. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions[J]. Journal of Experimental Botany,2015,66(3):813−825. doi: 10.1093/jxb/eru442
|
[28] |
孙媛媛. 异型发酵乳杆菌高密度培养及提高其冻干存活率的方法[D]. 无锡: 江南大学, 2021.
SUN Y Y. High-density cultivation of heterofermentive Lactobacillus and methods to improve the freeze-drying survival rate[D]. Wuxi: Jiangnan University, 2021.
|
[29] |
芮海云, 庄凯, 沈振国, 等. 两个箭舌豌豆品种根响应镉胁迫的蛋白质组学分析[J]. 植物生理学报,2016,52(7):1089−1098. [BING H Y, ZHUANG K, SHEN Z G, et al. Proteomics analysis of cadmium stress responses in the roots of two Vicia sativa varieties differing in Cd tolerance[J]. Plant Physiology Journal,2016,52(7):1089−1098. doi: 10.13592/j.cnki.ppj.2016.0192
BING H Y, ZHUANG K, SHEN Z G, et al. Proteomics analysis of cadmium stress responses in the roots of two Vicia sativa varieties differing in Cd tolerance[J]. Plant Physiology Journal, 2016, 52(7): 1089-1098. doi: 10.13592/j.cnki.ppj.2016.0192
|
[30] |
KIM Y K, LEE M Y. Proteomic analysis of differentially expressed proteins of rice in response to cadmium[J]. Journal of the Korean Society for Applied Biological Chemistry,2009,52(5):428−436. doi: 10.3839/jksabc.2009.075
|
[31] |
杨婉莹, 孙莎莎, 巩彪, 等. 超表达SlSAMS1对番茄镉胁迫的缓解效应及抗氧化系统的影响[J]. 核农学报,2020,34(3):487−496. [YANG W Y, SUN S S, GONG B, et al. Effects of overexpressing SISAMS1 on tomato tolerance to cadmium toxicity and antioxidant system[J]. Journal of Nuclear Agricultural Sciences,2020,34(3):487−496. doi: 10.11869/j.issn.100-8551.2020.03.0487
YANG W Y, SUN S S, GONG B, et al. Effects of overexpressing SISAMS1 on tomato tolerance to cadmium toxicity and antioxidant system[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 487-496. doi: 10.11869/j.issn.100-8551.2020.03.0487
|
[32] |
梁国斌, 堵国成, 陈坚. 半胱氨酸添加与溶氧控制及pH胁迫相结合促进产朊假丝酵母合成谷胱甘肽[J]. 过程工程学报,2009,9(4):786−790. [LIANG G B, DU G C, CHEN J. Enhancement of glutathione production by combining cysteine addition with dissolved oxygen control and low pH stress in high cell density cultivation of Candida utilis[J]. The Chinese Journal of Process Engineering,2009,9(4):786−790. doi: 10.3321/j.issn:1009-606X.2009.04.026
LIANG G B, DU G C, CHEN J. Enhancement of glutathione production by combining cysteine addition with dissolved oxygen control and low pH stress in high cell density cultivation of Candida utilis[J]. The Chinese Journal of Process Engineering, 2009, 9(4): 786-790. doi: 10.3321/j.issn:1009-606X.2009.04.026
|
[33] |
王定康, 张敏, 黄钧, 等. 盐胁迫对鲁氏酵母菌生理特性的影响[J]. 食品科学技术学报,2019,37(4):35−41. [WANG D K, ZHANG M, HUANG J, et al. Effect of salt stress on physiological characterization of Zygosacchromyces rouxii[J]. Journal of Food Science and Technology,2019,37(4):35−41. doi: 10.3969/j.issn.2095-6002.2019.04.005
WANG D K, ZHANG M, HUANG J, et al. Effect of salt stress on physiological characterization of Zygosacchromyces rouxii[J]. Journal of Food Science and Technology, 2019, 37(4): 35-41. doi: 10.3969/j.issn.2095-6002.2019.04.005
|
[34] |
LEE K, PI K, KIM E B, et al. Glutathione-mediated response to acid stress in the probiotic bacterium, Lactobacillus salivarius[J]. Biotechnology Letters,2010,32(7):969−972. doi: 10.1007/s10529-010-0244-6
|
[35] |
高姝娟, 刘锡锰, 高贵, 等. 谷胱甘肽的抗线粒体脂质过氧化作用[J]. 生物化学杂志,1997,13(3):287−291. [GAO S J, LIU X M, GAO G, et al. Antioxidative effect of glutathione on lipid peroxidation of mitochondrion[J]. Journal of Biochemistry,1997,13(3):287−291.
GAO S J, LIU X M, GAO G, et al. Antioxidative effect of glutathione on lipid peroxidation of mitochondrion[J]. Journal of Biochemistry, 1997, 13(3): 287-291.
|
[36] |
HAN H M, KIM I J, YUN E J, et al. Overproduction of exopolysaccharide colanic acid by Escherichia coli by strain engineering and media optimization[J]. Applied Biochemistry and Biotechnology,2020,193(1):111−127.
|
1. |
宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
![]() | |
2. |
龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 .
![]() | |
3. |
罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
![]() | |
4. |
武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
![]() | |
5. |
张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
![]() | |
6. |
窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
![]() | |
7. |
李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
![]() | |
8. |
黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
![]() | |
9. |
赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 .
![]() | |
10. |
李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
![]() | |
11. |
陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
![]() | |
12. |
魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
![]() | |
13. |
袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .
![]() |