Citation: | LI Na, HUANG Haizhi, YU Xiaoping, et al. Research Progress of Adsorption Extraction of Pesticide and Veterinary Drug Residues in Agricultural Products Based on Metal-organic Frameworks[J]. Science and Technology of Food Industry, 2023, 44(1): 429−438. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020176. |
[1] |
HSIEH H Y, HUANG K C, CHENG J O, et al. Environmental effects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters, Taiwan: Concentration, distribution, profile, and sources[J]. Mar Pollut Bull,2019,144:68−78. doi: 10.1016/j.marpolbul.2019.04.048
|
[2] |
YALI Z P, JADID A P, SAMIN L A. Modeling of retention time for polychlorinated biphenyl congeners in human adipose tissue using quantitative structure-retention relationship methodology[J]. International Journal of Environmental Science and Technology,2017,14(11):2357−2366. doi: 10.1007/s13762-017-1304-4
|
[3] |
林守二, 杨丽娟, 郑仁锦, 等. 超高效液相色谱-四极杆-飞行时间质谱快速筛查蔬菜中18种农药残留[J]. 分析科学学报,2021,37(3):279−286. [LIN S E, YANG L J, ZHENG R J, et al. Rapid screening of 18 pesticide residues in vegetables by ULTRA performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. Journal of Analytical Science,2021,37(3):279−286. doi: 10.13526/j.issn.1006-6144.2021.03.002
|
[4] |
魏玉霞, 王芳, 左郡, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定淡水鱼和淡水虾中的11种喹诺酮类兽药残留量[J]. 食品安全质量检测学报,2021,12(7):2906−2912. [WEI Y X, WANG F, ZUO J, et al. Simultaneous determination of 11 quinolones residues in freshwater fish and shrimp by QuEChERS-ULTRA performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(7):2906−2912. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.07.061
|
[5] |
王伟民, 孙强, 沈沁怡, 等. 超高压液相色谱法测定水果和蔬菜中虫螨腈及其代谢物以及在甘蓝中的残留评价应用[J]. 分析测试学报,2021,40(12):1706−1712. [WANG W M, SUN Q, SHEN Q Y, et al. Determination of chlorfenonil and its metabolites in fruits and vegetables by ULTRA high pressure liquid chromatography and application of residue evaluation in cabbage[J]. Journal of Instrumental Analysis,2021,40(12):1706−1712. doi: 10.19969/j.fxcsxb.21032403
|
[6] |
梁倩文, 朱国婵, 郑超红, 等. 全自动固相萃取-液相色谱串联质谱法测定动物源性食品中53种常见兽药残留[J]. 食品安全质量检测学报,2021,12(10):4161−4173. [LIANG Q W, ZHU G C, ZHENG C H, et al. Determination of 53 common veterinary drug residues in food of animal origin by automatic solid phase extraction-liquid chromatography tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(10):4161−4173. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.10.043
|
[7] |
FEREY G. Hybrid porous solids: Past, present, future[J]. Chem Soc Rev,2008,37(1):191−214. doi: 10.1039/B618320B
|
[8] |
LU W, WEI Z, GU Z Y, et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews,2014,43(16):5561−5593. doi: 10.1039/C4CS00003J
|
[9] |
ZHAN X Q, ZHANG Y, XIE L, et al. Magnetically treated Zr-based UiO-type porous coordination polymers study on adsorption of azo dye[J]. Microporous and Mesoporous Materials,2020:306. doi: 10.1016/j.micromeso.2020.110291
|
[10] |
XIN S, YANG N, GAO F, et al. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor[J]. Applied Surface Science,2017,414:218−223. doi: 10.1016/j.apsusc.2017.04.109
|
[11] |
DHAKA S, KUMAR R, DEEP A, et al. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments[J]. Coordination Chemistry Reviews,2019,380:330−352. doi: 10.1016/j.ccr.2018.10.003
|
[12] |
OMAR M Y. Reticular synthesis and the design of new materials[J]. Nature,2003,6941(423):705−714.
|
[13] |
KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater,2013,244-245:444−456. doi: 10.1016/j.jhazmat.2012.11.011
|
[14] |
KANG I J, KHAN N A, HAQUE E, et al. Chemical and thermal stability of isotypic metal-organic frameworks: Effect of metal ions[J]. Chemistry,2011,17(23):6437−6442. doi: 10.1002/chem.201100316
|
[15] |
JOHN J L. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration[J]. Journal of the American Chemical Society,2009,43(131):15834−15842.
|
[16] |
JEFFERY A G. The interaction of water with MOF-5 simulated by molecular dynamics[J]. Journal of the American Chemical Society,2006,33(128):S1−S4.
|
[17] |
VAN DER VOORT P, LEUS K, LIU Y Y, et al. Vanadium metal-organic frameworks: Structures and applications[J]. New J Chem,2014,38(5):1853−1867. doi: 10.1039/C3NJ01130E
|
[18] |
YANG C, KAIPA U, MATHER Q Z, et al. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. J Am Chem Soc,2011,133(45):18094−18097. doi: 10.1021/ja208408n
|
[19] |
ZU D D, LU L, LIU X Q, et al. Improving hydrothermal stability and catalytic activity of metal-organic frameworks by graphite oxide incorporation[J]. The Journal of Physical Chemistry C,2014,118(34):19910−19917. doi: 10.1021/jp506335x
|
[20] |
WU T, SHEN L, LUEBBERS M, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups[J]. Chem Commun (Camb),2010,46(33):6120−6122. doi: 10.1039/c0cc01170c
|
[21] |
JEREMIAS F, KHUTIA A, HENNINGER S K, et al. MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes-a promising application[J]. J Mater Chem,2012,22(20):10148−10151. doi: 10.1039/C2JM15615F
|
[22] |
CYCHOSZ K A, MATZGER A J. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water[J]. Langmuir,2010,26(22):17198−17202. doi: 10.1021/la103234u
|
[23] |
EHRENMANN J, HENNINGER S K, JANIAK C. Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J]. European Journal of Inorganic Chemistry,2011,2011(4):471−474. doi: 10.1002/ejic.201001156
|
[24] |
JASMINA HAFIZOVIC C. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society,2008,42(130):13850−13851.
|
[25] |
NESHASTEHGAR M, RAHMANI P, SHOJAEI A, et al. Enhanced adsorption removal performance of UiO-66 by rational hybridization with nanodiamond[J]. Microporous and Mesoporous Materials,2020:296. doi: 10.1016/j.micromeso.2020.110008
|
[26] |
ZHAO R, MA T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water[J]. Chemical Engineering Journal,2020:382. doi: 10.1016/j.cej.2019.122893
|
[27] |
HE X, ZHOU Y, YANG W, et al. Microwave assisted magnetic solid phase extraction using a novel amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101 (Cr) for the determination of organochlorine pesticides in soil samples[J]. Talanta,2019,196:572−578. doi: 10.1016/j.talanta.2018.12.019
|
[28] |
ABDELHAMEED R M, TAHA M, ABDEL-GAWAD H, et al. Amino-functionalized Al-MIL-53 for dimethoate pesticide removal from wastewater and their intermolecular interactions[J]. Journal of Molecular Liquids,2021:327. doi: 10.1016/j.molliq.2020.114852
|
[29] |
SOURY S, FIROOZICHAHAK A, NEMATOLLAHI D, et al. Needle-trap device packed with the MIL-100 (Fe) metal-organic framework for the extraction of the airborne organochlorine pesticides[J]. Microchemical Journal,2021:171. doi: 10.1016/j.microc.2021.106866
|
[30] |
LI S, JIANG J, HO S H, et al. Bimetallic nitrogen-doped porous carbon derived from ZIF-L&FeTPP@ZIF-8 as electrocatalysis and application for antibiotic wastewater treatment[J]. Separation and Purification Technology,2021:276. doi: 10.1016/j.seppur.2021.119259
|
[31] |
CHENG Y, MA B, TAN C P, et al. Hierarchical macro-microporous ZIF-8 nanostructures as efficient nano-lipase carriers for rapid and direct electrochemical detection of nitrogenous diphenyl ether pesticides[J]. Sensors and Actuators B: Chemical,2020:321. doi: 10.1016/j.snb.2020.128477
|
[32] |
NIU M, LI Z, HE W, et al. Attapulgite modified magnetic metal-organic frameworks for magnetic solid phase extraction and determinations of benzoylurea insecticides in tea infusions[J]. Food Chem,2020,317:126425. doi: 10.1016/j.foodchem.2020.126425
|
[33] |
JIANG Y, QIN Z, SONG X, et al. Facile preparation of metal organic framework-based laboratory semi-automatic micro-extraction syringe packed column for analysis of parabens in vegetable oil samples[J]. Microchemical Journal,2020:158. doi: 10.1016/j.microc.2020.105200
|
[34] |
DUO H, WANG Y, WANG L, et al. Zirconium (IV)-based metal-organic frameworks (UiO-67) as solid-phase extraction adsorbents for extraction of phenoxyacetic acid herbicides from vegetables[J]. J Sep Sci,2018,41(22):4149−4158. doi: 10.1002/jssc.201800784
|
[35] |
MOTAGHI H, ARABKHANI P, PARVINNIA M, et al. Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application[J]. Separation and Purification Technology,2022:284. doi: 10.1016/j.seppur.2021.120258
|
[36] |
SIIPOLA V, PFLUGMACHER S, ROMAR H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences, 2020, 10(3).
|
[37] |
KUMAR V, KUMAR S, KIM K H, et al. Metal organic frameworks as potent treatment media for odorants and volatiles in air[J]. Environ Res,2019,168:336−356. doi: 10.1016/j.envres.2018.10.002
|
[38] |
HAMZA R A, IORHEMEN O T, TAY J H. Occurrence, impacts and removal of emerging substances of concern from wastewater[J]. Environmental Technology & Innovation,2016,5:161−175. doi: 10.1016/j.eti.2016.02.003
|
[39] |
FOSU P O, DONKOR A, ZIWU C, et al. Surveillance of pesticide residues in fruits and vegetables from Accra Metropolis markets, Ghana, 2010–2012: A case study in Sub-Saharan Africa[J]. Environmental Science and Pollution Research,2017,24(20):17187−17205. doi: 10.1007/s11356-017-9287-8
|
[40] |
CHRISTIA C, BIZANI E, CHRISTOPHORIDIS C, et al. Pesticide residues in fruit samples: Comparison of different QuEChERS methods using liquid chromatography-tandem mass spectrometry[J]. Environmental Science and Pollution Research,2015,22(17):13167−13178. doi: 10.1007/s11356-015-4456-0
|
[41] |
MOINFAR S, KHODAYARI A, ABDULRAHMAN S S, et al. Development of a SPE/GC-MS method for the determination of organophosphorus pesticides in food samples using syringe filters packed by GNP/MIL-101(Cr) nanocomposite[J]. Food Chem,2022,371:130997. doi: 10.1016/j.foodchem.2021.130997
|
[42] |
SHAKOURIAN M, YAMINI Y, SAFARI M. Facile magnetization of metal-organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples[J]. Talanta,2020,218:121139. doi: 10.1016/j.talanta.2020.121139
|
[43] |
WAN M, XIANG F, LIU Z, et al. Novel Fe3O4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices[J]. Food Chem,2021,365:130485. doi: 10.1016/j.foodchem.2021.130485
|
[44] |
ZHANG S, DU Z, LI G. Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples[J]. Talanta,2013,115:32−39. doi: 10.1016/j.talanta.2013.04.029
|
[45] |
ZHOU Y, ZHU J, YANG J, et al. Magnetic nanoparticles speed up mechanochemical solid phase extraction with enhanced enrichment capability for organochlorines in plants[J]. Anal Chim Acta,2019,1066:49−57. doi: 10.1016/j.aca.2019.03.049
|
[46] |
SUN X, FU Z, JIANG T, et al. Application of beta-cyclodextrin metal-organic framework/titanium dioxide hybrid nanocomposite as dispersive solid-phase extraction adsorbent to organochlorine pesticide residues in honey samples[J]. J Chromatogr A,2022,1663:462750. doi: 10.1016/j.chroma.2021.462750
|
[47] |
QIAN K, DENG Q, FANG G, et al. Metal-organic frameworks supported surface-imprinted nanoparticles for the sensitive detection of metolcarb[J]. Biosens Bioelectron,2016,79:359−363. doi: 10.1016/j.bios.2015.12.071
|
[48] |
HAO L, LIU X, WANG J, et al. Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis[J]. Talanta,2015,142:104−109. doi: 10.1016/j.talanta.2015.04.034
|
[49] |
WANG M, WANG J, WANG K, et al. Magnetic mesoporous material derived from MIL-88B modified by l-alanine as modified QuEChERS adsorbent for the determination of 6 pesticide residues in 4 vegetables by UPLC-MS/MS[J]. Food Chem,2022,384:132325. doi: 10.1016/j.foodchem.2022.132325
|
[50] |
LIANG T, WANG S, CHEN L, et al. Metal organic framework-molecularly imprinted polymer as adsorbent in matrix solid phase dispersion for pyrethroids residue extraction from wheat[J]. Food Analytical Methods,2018,12(1):217−228. doi: 10.1007/s12161-018-1353-4
|
[51] |
YAMINI Y, SAFARI M. Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids[J]. Microchemical Journal,2019,146:134−141. doi: 10.1016/j.microc.2018.12.059
|
[52] |
MAO X, XIAO W, WAN Y, et al. Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables[J]. Food Chem,2021,345:128807. doi: 10.1016/j.foodchem.2020.128807
|
[53] |
XU Y, LI X, ZHANG W, et al. Zirconium (Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS[J]. Food Chem,2021,344:128650. doi: 10.1016/j.foodchem.2020.128650
|
[54] |
LIAO Y, ZHANG Y, ZHAO Q, et al. MIL-101 (Cr) based d-SPE/UPLC-MS/MS for determination of neonicotinoid insecticides in beverages[J]. Microchemical Journal,2022:175. doi: 10.1016/j.microc.2021.107091
|
[55] |
GHIASI A, MALEKPOUR A, MAHPISHANIAN S. Metal-organic framework MIL101 (Cr)-NH2 functionalized magnetic graphene oxide for ultrasonic-assisted magnetic solid phase extraction of neonicotinoid insecticides from fruit and water samples[J]. Talanta,2020,217:121120. doi: 10.1016/j.talanta.2020.121120
|
[56] |
HEJABRI KANDEH S, AMINI S, EBRAHIMZADEH H. PVA/Stevia/MIL-88A@AuNPs composite nanofibers as a novel sorbent for simultaneous extraction of eight agricultural pesticides in food and vegetable samples followed by HPLC-UV analysis[J]. Food Chem,2022,386:132734. doi: 10.1016/j.foodchem.2022.132734
|
[57] |
LI T, LU M, GAO Y, et al. Double layer MOFs M-ZIF-8@ZIF-67: The adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples[J]. J Adv Res,2020,24:159−166. doi: 10.1016/j.jare.2020.03.013
|
[58] |
ZHANG Q, XIAO W, WU Y, et al. A simple, environmental-friendly and reliable d-SPE method using amino-containing metal-organic framework MIL-125-NH2 to determine pesticide residues in pomelo samples from different localities[J]. Food Chem,2022,372:131208. doi: 10.1016/j.foodchem.2021.131208
|
[59] |
SIRAJ J, MEKONEN S, ASTATKIE H, et al. Organochlorine pesticide residues in tea and their potential risks to consumers in Ethiopia[J]. Heliyon,2021,7(3):e07667. doi: 10.1016/j.heliyon.2021.e07667
|
[60] |
GUO H, CHEN A, ZHOU J, et al. Efficient extraction and determination of carbamate pesticides in vegetables based on a covalent organic frameworks with acylamide sites[J]. Journal of Chromatography A,2022:1664. doi: 10.1016/j.chroma.2021.462799
|
[61] |
HOU Y, LI Y, HUANG W, et al. Synthesis of sheet-like polypyrrole nanowires for the microextraction of trace residues of pyrethroid pesticides in human plasma and molecular dynamics-aided study of adsorption mechanism[J]. Journal of Chromatography A,2020:1632. doi: 10.1016/j.chroma.2020.461609
|
[62] |
CHENG Q, HUANG M, XIAO A, et al. Recyclable nitrogen-containing chitin-derived carbon microsphere as sorbent for neonicotinoid residues adsorption and analysis[J]. Carbohydr Polym,2021,260:117770. doi: 10.1016/j.carbpol.2021.117770
|
[63] |
LI L, YIN Y, ZHENG G, et al. Determining β-lactam antibiotics in aquaculture products by modified QuECHERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)[J]. Arabian Journal of Chemistry, 2022, 15(7).
|
[64] |
LIRIO S, LIU W L, LIN C L, et al. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples[J]. J Chromatogr A,2016,1428:236−245. doi: 10.1016/j.chroma.2015.05.043
|
[65] |
KHOOBI A, SALAVATI-NIASARI M, GHANI M, et al. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nanosorbent for stir bar sorptive extraction in biological and food samples[J]. Food Chem,2019,288:39−46. doi: 10.1016/j.foodchem.2019.02.118
|
[66] |
BAGHERI A R, GHAEDI M. Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples[J]. J Pharm Anal,2020,10(4):365−375. doi: 10.1016/j.jpha.2020.02.006
|
[67] |
LI K, LI J J, ZHAO N, et al. Removal of tetracycline in sewage and dairy products with high-stable MOF[J]. Molecules, 2020, 25(6): 1312.
|
[68] |
LI Y, WANG J, HUANG Z, et al. An Eu-doped Zr-metal-organic framework for simultaneous detection and removal of antibiotic tetracycline[J]. Journal of Environmental Chemical Engineering,2021,9(5):106012. doi: 10.1016/j.jece.2021.106012
|
[69] |
WU N, GUO H, WANG M, et al. A novel core-shell coordination assembled hybrid via postsynthetic metal exchange for simultaneous detection and removal of tetracycline[J]. Anal Chim Acta,2022,1190:339247. doi: 10.1016/j.aca.2021.339247
|
[70] |
PANG J, LIAO Y, HUANG X, et al. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples[J]. Talanta,2019,199:499−506. doi: 10.1016/j.talanta.2019.03.019
|
[71] |
MARTINEZ-PEREZ-CEJUELA H, BENAVENTE F, SIMO-ALFONSO E F, et al. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis[J]. Talanta,2021,233:122529. doi: 10.1016/j.talanta.2021.122529
|
[72] |
LI J, ZHOU Y, SUN Z, et al. Restricted access media-imprinted nanomaterials based on a metal-organic framework for highly selective extraction of fluoroquinolones in milk and river water[J]. J Chromatogr A,2020,1626:461364. doi: 10.1016/j.chroma.2020.461364
|
[73] |
WANG S, WANG Z, ZHANG L, et al. Adsorption and convenient ELISA detection of sulfamethazine in milk based on MOFs pretreatment[J]. Food Chem,2022,374:131712. doi: 10.1016/j.foodchem.2021.131712
|
[74] |
JIA X, ZHAO P, YE X, et al. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples[J]. Talanta,2017,169:227−238. doi: 10.1016/j.talanta.2016.08.086
|
[75] |
HAN X, ZHANG X, ZHONG L, et al. Preparation of sulfamethoxazole molecularly imprinted polymers based on magnetic metal–organic frameworks/graphene oxide composites for the selective extraction of sulfonamides in food samples[J]. Microchemical Journal,2022:177. doi: 10.1016/j.microc.2022.107259
|
[76] |
XU Y, LI Z, YANG H, et al. A magnetic solid phase extraction based on UiO-67@GO@Fe3O4 coupled with UPLC-MS/MS for the determination of nitroimidazoles and benzimidazoles in honey[J]. Food Chem,2022,373(Pt B):131512. doi: 10.1016/j.foodchem.2021.131512
|
[77] |
WANG Y, DAI X, HE X, et al. MIL-101 (Cr) @GO for dispersive micro-solid-phase extraction of pharmaceutical residue in chicken breast used in microwave-assisted coupling with HPLC-MS/MS detection[J]. J Pharm Biomed Anal,2017,145:440−446. doi: 10.1016/j.jpba.2017.07.010
|
[78] |
LAN H, GAN N, PAN D, et al. Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples[J]. J Chromatogr A,2014,1365:35−44. doi: 10.1016/j.chroma.2014.08.096
|
[79] |
HE J X, YUAN H Q, ZHONG Y F, et al. A luminescent Eu (3+)-functionalized MOF for sensitive and rapid detection of tetracycline antibiotics in swine wastewater and pig kidney[J]. Spectrochim Acta A Mol Biomol Spectrosc,2022,277:121252. doi: 10.1016/j.saa.2022.121252
|
[80] |
LU Z, DENG F, HE R, et al. A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry[J]. Microchemical Journal,2019:151. doi: 10.1016/j.microc.2019.104213
|
[81] |
GHOLAMI H, ARABI M, GHAEDI M, et al. Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples[J]. J Chromatogr A,2019,1594:13−22. doi: 10.1016/j.chroma.2019.02.015
|
[82] |
HU Z H, WANG Y F, OMER A M, et al. Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water[J]. Int J Biol Macromol,2018,107(Pt A):453−462. doi: 10.1016/j.ijbiomac.2017.09.009
|
[83] |
XU L, WU R, GENG X, et al. Rapid detection of sulfonamide antibiotics residues in swine urine by surface-enhanced Raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc,2022,267(Pt 2):120570. doi: 10.1016/j.saa.2021.120570
|
[84] |
TOLGYESI A, SHARMA V K, FEKETE S, et al. Development of a rapid method for the determination and confirmation of nitroimidazoles in six matrices by fast liquid chromatography-tandem mass spectrometry[J]. J Pharm Biomed Anal,2012,64-65:40−48. doi: 10.1016/j.jpba.2012.02.013
|
[1] | CHEN Fangxue, QIU Wenxing, SHEN Lingwei, LI Dongsheng, QIAO Yu, WU Wenjin, XIONG Guangquan, WANG Lan, DING Anzi, LI Xin, SHI Liu. Formation of Volatile Flavor Compounds and Changes in Fat Oxidation in Blunt-snout Bream by Traditional Sun-drying and Shade-drying[J]. Science and Technology of Food Industry, 2023, 44(14): 36-45. DOI: 10.13386/j.issn1002-0306.2022070072 |
[2] | XU Ruoyuan, XUE Jiyuan, WANG Min, ZHAO Xucui, SHEN Hui, GAO Sumin, MENG Xiangren, WANG Hengpeng. Effects of Different Thermal Treatments on Tenderness and Volatile Flavor Compounds of Beef[J]. Science and Technology of Food Industry, 2023, 44(4): 77-87. DOI: 10.13386/j.issn1002-0306.2022050168 |
[3] | LIU Dongao, XIE Shuangyu, LI Zhi, LI Tianyi, PENG Yuan, SUN Bo. Analysis on the Difference of the Volatile Flavor Compounds of Northeast Farmhouse Soybean Paste with Different Salt Concentrations[J]. Science and Technology of Food Industry, 2022, 43(19): 356-363. DOI: 10.13386/j.issn1002-0306.2022010003 |
[4] | LIU Yang, HUANG Jia, JIA Hongfeng, FANG Xiaowei, LONG Juyi, LAN Ning. Effects of Different Cooking Methods on Volatile Flavor Compounds in Beef[J]. Science and Technology of Food Industry, 2022, 43(10): 305-313. DOI: 10.13386/j.issn1002-0306.2021080198 |
[5] | LIU Guomin, QIN Weizhi, WEI Rongchang, YI Ruolan, LIAO Yujiao, ZHENG Xu, CHE Jianglü. Comparative Analysis of Volatile Flavor Compounds in Different Varieties (Lines) of Potatoes[J]. Science and Technology of Food Industry, 2022, 43(9): 284-292. DOI: 10.13386/j.issn1002-0306.2021080141 |
[6] | LING Shengnan, LIU Teyuan, CHEN Xueye, WANG Hongli, WANG Xichang, SHI Wenzheng. Effect of Different Thawing Methods on the Freshness and Volatile Flavor Compounds of Anchovy (Engraulis encrasicholus)[J]. Science and Technology of Food Industry, 2022, 43(5): 322-330. DOI: 10.13386/j.issn1002-0306.2021050273 |
[7] | JIANG Feng, ZHENG Xinru, ZHOU Changyi, JIANG Xiaoying, LIN Weiyan, LIU Yu, SU Wenjin, SU Guocheng. Effect of Lactobacillus reuteri on Volatile Flavor Compounds of Fermented Surimi[J]. Science and Technology of Food Industry, 2021, 42(12): 240-245. DOI: 10.13386/j.issn1002-0306.2020070234 |
[8] | XU Zihan, SHU Chang, LUO Zhongwei, LV Zhenzhen, ZHANG Wen, PAN Zhiming. Optimization of the HS-SPME-GC-MS Technique for Determination of Volatile Flavor Compounds in Pork by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(6): 252-259. DOI: 10.13386/j.issn1002-0306.2020050295 |
[9] | ZHU Li-jie, SHI Yue, LIU Xiu-ying, WANG Bo, TANG Ming-li, LIU He, HE Yu-tang, MA Tao. Solid phase micro- extraction combined with gas chromatography- mass spectrometry analysis of volatile flavor compounds of corn pancake[J]. Science and Technology of Food Industry, 2016, (10): 102-105. DOI: 10.13386/j.issn1002-0306.2016.10.011 |
[10] | YANG Li-ping, YI Shu-min, LI Xue-peng, XU Yong-xia, LI Ying-chang, LI Jian-rong. Volatile flavor compounds changing in dried- seasoned squid ( Dosidicus gigas) during the processing[J]. Science and Technology of Food Industry, 2015, (11): 265-272. DOI: 10.13386/j.issn1002-0306.2015.11.046 |