HU Longxiao, CAO Lincai, WANG Kai, et al. Effects of Postharvest Ripening on the Physicochemical and Nutraceutical Properties of Mango (Mangifera indica L. cv Tainung No.1)[J]. Science and Technology of Food Industry, 2023, 44(2): 369−375. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020128.
Citation: HU Longxiao, CAO Lincai, WANG Kai, et al. Effects of Postharvest Ripening on the Physicochemical and Nutraceutical Properties of Mango (Mangifera indica L. cv Tainung No.1)[J]. Science and Technology of Food Industry, 2023, 44(2): 369−375. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020128.

Effects of Postharvest Ripening on the Physicochemical and Nutraceutical Properties of Mango (Mangifera indica L. cv Tainung No.1)

More Information
  • Received Date: February 16, 2022
  • Available Online: November 08, 2022
  • The present project objective was to evaluate physicochemical and nutritional changes of mango cv. Tainung No.1 that included firmness, color, total soluble solids (TSS), titratable acidity (TA), carotenoid, vitamin C (VC), protein, total sugar and aroma component at 10 postharvest ripening-stages under the ripeing condition (0.1% w/w ethephon, 30 °C, 40%~50% humidity). Results indicated a decrease in firmness from 19.76 to 0.99 N, while TA decreased from 1.37% to 0.27% and TSS increased from 12.92% to 23.64%. When the ripening time increased from 0 to 60 h, the yellow index increased significantly, and more than 85% of fruit skins turned yellow. The content of carotenoid increased to 4.90 µg/g (maximum), while VC decreased from 326.66 mg/100 g to 180.00 mg/100 g, and total sugar content increased significantly. When ripening time extended to 108 h, the content carotenoid increased to 10.93 µg/g, and the changes of the VC, soluble protein and total sugar were not significant. The aroma compounds of mango was mainly terpenes, among which the content of terpinolene was the highest, and its content increased rapidly within 60 h of ripening. Exogenous ethephon accelerated the synthesis rate of iso-terpinene in fruits. After 60 h of ripening, the color and aroma of mango reached maturity.
  • [1]
    梁敏华, 邓鸿铃, 梁瑞进, 等. 外源乙烯和1-甲基环丙烯对‘圣心’芒果采后物性和香气特征的影响[J]. 食品科学,2020,41(15):231−237. [LIANG M H, DENG H L, LIANG R J, et al. Effects of exogenous ethylene and 1-methylcyclopropene on postharvest physicochemical and aroma characteristics of 'Shengxin' mango[J]. Food Science,2020,41(15):231−237. doi: 10.7506/spkx1002-6630-20200324-357
    [2]
    OLIVER-SIMANCAS R, LABRADOR-FERNANDEZ L, DAZ-MAROTO M C, et al. Comprehensive research on mango by-products applications in food industry[J]. Trends in Food Science & Technology,2021,118:179−188.
    [3]
    JAHURUL M H A, ZAIDUL I S M, GHAFOOR K, et al. Mango (Mangifera indica L.) by-products and their valuable components: A review[J]. Food Chemistry,2015,183:173−180. doi: 10.1016/j.foodchem.2015.03.046
    [4]
    PALAFOX-CARLOS H, YAHIA E, ISLAS-OSUNA M A, et al. Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity[J]. Scientia Horticulturae,2012,135:7−13. doi: 10.1016/j.scienta.2011.11.027
    [5]
    IBARRA-GARZA I P, RAMOS-PARRA P A, HERNANDEZ-BRENES C, et al. Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango (Mangifera indica L. cv Keitt)[J]. Postharvest Biology & Technology,2015,103:45−54.
    [6]
    张业歆, 刘家粮, 潘永贵, 等. 氯吡苯脲浸泡处理延缓采后芒果成熟和软化的生理机制[J]. 食品科学,2021,42(19):234−241. [ZHANG Y X, LIU J L, PAN Y G, et al. Physiological mechanisms by which forchlorfenuron soaking treatment delays postharvest ripening and softening of mango fruit[J]. Food Science,2021,42(19):234−241. doi: 10.7506/spkx1002-6630-20200914-177
    [7]
    KULKARNI S G, KUDACHIKAR V B, PRAKASH M. Studies on physico-chemical changes during artificial ripening of banana (Musa sp.) variety 'Robusta'[J]. Journal of Food Science & Technology,2011,48(6):730−734.
    [8]
    曹建康, 姜微波, 赵淑梅. 果蔬采后生理生化实验指导 [M]. 北京: 中国轻工业出版社, 2007: 58-60.

    CAO J K, JIANG W B, ZHAO S M. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables [M]. Beijing: China Light Industry Press, 2007: 58-60
    [9]
    蔡晨晨, 马瑞佳, 刘涛, 等. 百里香精油微胶囊复合涂膜在芒果保鲜中的应用[J]. 食品工业科技,2021,42(10):275−280. [CAI C C, MA R J, LIU T, et al. Application of thyme oil microcapsule composite coating in mango preservation[J]. Science and Technology of Food Industry,2021,42(10):275−280. doi: 10.13386/j.issn1002-0306.2020080254
    [10]
    王贵, 孟嘉珺, 许文静, 等. 不同品种芒果的营养成分及风味物质分析[J]. 食品工业科技,2021,43(1):71−79. [WANG G, MENG J J, XU W J, et al. Analysis of nutritional components and flavor substances of different varieties of mangoes[J]. Science and Technology of Food Industry,2021,43(1):71−79.
    [11]
    刘华南, 江虹锐, 陆雄伟, 等. 顶空固相微萃取-气质联用分析不同芒果品种香气成分差异[J]. 食品工业科技,2021,42(11):211−217. [LIU H N, JIANG H R, LU X W, et al. Analysis and comparison of aroma components in different mango varieties by headspace-solid-phase microextraction-gas chromatograph-mass spectrometer[J]. Science and Technology of Food Industry,2021,42(11):211−217. doi: 10.13386/j.issn1002-0306.2020060377
    [12]
    董真真. 外源赤霉素处理对不同品种芒果品质的影响 [D]. 海口: 海南大学, 2016.

    DONG Z Z. Effects of exogenous gibberellin treatment on mango quality of different varieties [D]. Haikou: Hainan University, 2016.
    [13]
    PRASANNA V, PRABHA T N, THARANATHAN R N. Fruit ripening phenomena-an overview[J]. Critical Reviews in Food Science and Nutrition,2010,47(1):1−19.
    [14]
    普红梅, 王海丹, 杨芳, 等. 不同预处理的芒果保鲜效果比较[J]. 现代食品科技,2021,38(1):197−205. [PU H M, WANG H D, YANG F, et al. Comparison of preservation effects of different pretreatments on mango[J]. Modern Food Science and Technology,2021,38(1):197−205. doi: 10.13982/j.mfst.1673-9078.2022.1.0449
    [15]
    OLDONI F, BERNARDO M P, FILHO J, et al. Valorization of mangoes with internal breakdown through the production of edible films by continuous solution casting[J]. LWT-Food Science and Technology,2021,145(1):111339.
    [16]
    MARCAL S, PINTADO M. Mango peels as food ingredient/additive: Nutritional value, processing, safety and applications[J]. Trends in Food Science & Technology,2021,114(3):472−489.
    [17]
    ORNELAS-PAZ D J, YAHIA F, GARDEA-BEJAR A. Impact of the stage of ripening and dietary fat on in vitro bioaccessibility of β-carotene in 'Ataulfo' mango[J]. Journal of Agricultural and Food Chemistry,2008,56(4):1511−1516. doi: 10.1021/jf072751r
    [18]
    RISCHER H, NOHYNEK L, PUUPPONEN-PIMIA R, et al. Plant cell cultures of Nordic berry species: Phenolic and carotenoid profiling and biological assessments[J]. Food Chemistry,2022,306:130571.
    [19]
    MWAURAH P W, KUMAR S, KUMAR N, et al. Physicochemical characteristics, bioactive compounds and industrial applications of mango kernel and its products: A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020(2):2421−2446.
    [20]
    ORNELAS-PAZ J D J, YAHIA E M, GARDEA A A. Changes in external and internal color during postharvest ripening of ‘Manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+-time-of-flight mass spectrometry[J]. Postharvest Biology and Technology,2008,50:145−152. doi: 10.1016/j.postharvbio.2008.05.001
    [21]
    VITHANA M D K, SIGHN Z, JOHNSON S K. Harvest maturity stage affects the concentrations of health-promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of ripe 'Kensington Pride' mango fruit[J]. Scientia Horticulturae,2019,243:125−130. doi: 10.1016/j.scienta.2018.08.019
    [22]
    卫赛超, 谢晶. 模拟运输时间对芒果低温贮藏过程中生理与品质的影响[J]. 食品科学技术学报,2020,38(3):43−50. [WEI S C, XIE J. Effect of simulated transport time on physiology and quality of mango during low-temperature storage[J]. Journal of Food Science and Technology,2020,38(3):43−50. doi: 10.3969/j.issn.2095-6002.2020.03.006
    [23]
    DIARRA S S. Potential of mango (Mangifera indica L.) seed kernel as a feed ingredient for poultry: A review[J]. World's Poultry Science Journal,2014,70(2):279−288. doi: 10.1017/S0043933914000294
    [24]
    肖丹, 普红梅, 田浩, 等. 碳量子点/壳聚糖涂膜剂在芒果保鲜中的应用[J]. 食品与发酵工业,2019,45(22):130−135. [XIAO D, PU H M, TIAN H, et al. Application of carbon dots-chitosan coating in preservation of mango[J]. Food and Fermentation Industries,2019,45(22):130−135. doi: 10.13995/j.cnki.11-1802/ts.019172
    [25]
    OLIVER-SIMANCE R, MUNOZ R, DAZ-MAROTO M C, et al. Mango by-products as a natural source of valuable odor-active compounds[J]. Journal of the Science of Food and Agriculture,2020,100(13):4688−4695. doi: 10.1002/jsfa.10524
    [26]
    SUNG J, SHU J H, CHAMBERS A H, et al. The relationship between sensory attributes and chemical composition of different mango cultivars[J]. Journal of Agricultural & Food Chemistry,2019,67(18):5177−5188.
    [27]
    PINOJ A, MESA J, MUNOZ Y, et al. Volatile components from mango (Mangifera indica L.) cultivars[J]. Journal of Agricultural and Food Chemistry,2005,53(6):2213−2223. doi: 10.1021/jf0402633
    [28]
    黄豆, 曹烙文, 岑延相, 等. 顶空固相微萃取-全二维气相色谱/飞行时间质谱测定三种芒果香气成分[J]. 食品工业科技,2021,42(15):218−226. [HUANG D, CAO G W, CEN Y X, et al. Detection of aroma components in three cultivars of mango with headspace solid phase microextraction comprehensive two-dimensional gas chromatograph/time of flight mass spectrometer[J]. Science and Technology of Food Industry,2021,42(15):218−226. doi: 10.13386/j.issn1002-0306.2020070275
    [29]
    LI L, MA X W, ZHAN R L, et al. Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries[J]. PLoS One,2017,12(12):e0187487. doi: 10.1371/journal.pone.0187487
    [30]
    梁敏华, 苏新国, 梁瑞进, 等. 芒果果实采后香气物质合成代谢调控研究进展[J]. 农产品加工,2020(9):61−64. [LIANG M H, SU X G, LIANG R J, et al. Progress on aroma substances synthesis and metabolism of postharvest mango fruit[J]. Farm Products Processing,2020(9):61−64. doi: 10.16693/j.cnki.1671-9646(X).2020.09.046
    [31]
    HADI M A M E, ZHANG F J, WU F F, et al. Advances in fruit aroma volatile research[J]. Molecules,2013,18(7):8200−8229. doi: 10.3390/molecules18078200
    [32]
    张伟, 梁成伟. 植物类异戊二烯合成途径的研究进展[J]. 山东华工,2014,43(5):57−58. [ZHANG W, LISNG C W. Research progress of plant isoprenoids biosynthetic pathway[J]. Shandong Chemical Industry,2014,43(5):57−58.
  • Cited by

    Periodical cited type(15)

    1. 黄素艳,曹荣,刘楠,孙永,周德庆,王珊珊. 提取方式对微拟球藻蛋白理化性质和功能特性的影响. 食品工业科技. 2025(01): 87-96 . 本站查看
    2. 张梦桦,田青,惠明,张首玉. 甘薯蛋白的提取工艺优化及其性质研究. 中国调味品. 2025(02): 220-228 .
    3. 朱运坤,杨敏,赵仲凯,杨洁,王亮,张民伟. 核桃蛋白提取方法研究进展. 食品安全质量检测学报. 2024(08): 107-113 .
    4. 薛建娥,王英翰,洪金明,尹志,王奕凡,白建. 响应面优化核桃蛋白的提取及性质研究. 食品工业. 2024(05): 49-54 .
    5. 吴萍,周际松,邓乾春,董娟,金伟平,尚伟,刘昌盛,彭登峰. 核桃蛋白的结构、营养价值、制备、功能特性及在食品中的应用. 食品科学. 2024(15): 329-337 .
    6. 缪福俊,李文玕,刘润民,王高升,郭刚军,宁德鲁. 澳洲坚果分离蛋白的酶法纯化工艺优化及功能特性分析. 中国油脂. 2024(08): 64-68 .
    7. 孙娜. 微生物发酵核桃粕在食品生产中的应用. 食品工业. 2024(08): 152-156 .
    8. 朱志远,许石骏,黄子渝,耿树香,宁德鲁,叶永丽,孙秀兰. 挤压工艺对核桃蛋白高水分挤压组织化特性影响. 中国粮油学报. 2024(08): 105-113 .
    9. 黄思,张霞,牟泓羽,吴宽,马志星,凌云,赵存朝. 贯筋藤酶解核桃分离蛋白及其体内抗疲劳作用. 食品工业科技. 2024(22): 305-313 . 本站查看
    10. 宋露露,李云飞,刘鑫源,徐睿绮,郑郭芳,秦楠. 阿胶中驴血清白蛋白的提取纯化、功能特性及抗氧化活性分析. 食品工业科技. 2024(23): 179-188 . 本站查看
    11. 刘战霞,李斌斌,赵月,魏长庆,付旖旎,王霆,吴洪斌,付熙哲. 核桃蛋白/肉苁蓉多糖稳定白藜芦醇Pickering乳液的制备及其稳定性. 食品科学. 2024(23): 2328-2334 .
    12. 张斌,李聪方,杨莉,马芳,马子尧,王立杰,葛梦尧,董娟. 亚麻籽胶糖基化改性核桃蛋白及性质分析. 中国粮油学报. 2024(12): 88-96 .
    13. 龚频,岳山,王小娟,杨文娟,姚文博,陈福欣. 酶法制备蛹虫草多肽工艺优化及其体外抗氧化活性研究. 陕西科技大学学报. 2023(05): 50-56 .
    14. 王露露,明佳佳,杨涛,徐晨凤,肖园园,张驰,邓伶俐,商龙臣. 基于神经网络和响应面法对比优化富硒绿豆芽蛋白提取工艺研究. 食品与发酵工业. 2023(24): 148-155 .
    15. 刘聪,尹乐斌,邹文广,罗雪韵,杨学为. 响应面法优化辣椒籽蛋白提取工艺及其功能性质研究. 邵阳学院学报(自然科学版). 2023(06): 78-87 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (463) PDF downloads (22) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return