ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010171.
Citation: ZHANG Yun, ZHANG Kangyi, ZHAO Di, et al. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010171.

Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes

More Information
  • Received Date: January 19, 2022
  • Available Online: July 28, 2022
  • To explore the effect of saturated fatty acid carbon chain length on the structure and in vitro digestive properties of waxy wheat A and B starch-lipid complexes. Using waxy wheat A and B starch as the main raw materials, after being modified by compound enzymes, they were compounded with lauric acid, myristic acid, palmitic acid and stearic acid respectively, and the compound index (CI value), the solubility and swelling power, iodine absorption characteristics, crystal structure, fourier transform infrared spectroscopy and predicted glycemic index (pGI value) were investigated. The results showed that with the increasing of carbon chain (12~18), the CI values of starch-lipid complexes of waxy wheat A and B decreased from 53.66% to 38.15%, and from 60.35% to 41.04%. The solubility and swelling power of starch-lipid complexes of waxy wheat A and B increased gradually with the increasing of temperature and the number of carbon atoms. The solubility and swelling power of waxy wheat A starch-lauric acid at 90 ℃ were 1.99% and 3.34 g/g, the solubility and swelling power of waxy wheat B starch-lauric acid at 90 ℃ were 1.74% and 3.18 g/g respectively. Among the four lipid complexes, the complexes formed by waxy wheat starch A, B and lauric acid had relatively high crystallinity, reaching 25.37% and 23.50%, and their ratios at 1047/1022 cm−1 were also high, which were 0.993 and 0.989. Compared with the uncomplexed lipid-modified waxy wheat starch, the pGI values decreased significantly, from 47.63 to 36.61, and from 48.30 to 35.49 respectively. This study can provide a reference for the structure and in vitro digestion characteristics of starch-lipid complexes.
  • [1]
    郭宏伟, 赵城彬, 吴玉柱, 等. 红豆淀粉-脂质复合物结构及体外消化性质[J]. 食品科学,2019,40(21):21−27. [GUO Hongwei, ZHAO Chengbin, WU Yuzhu, et al. Red bean starch-lipid complex structure and in vitro digestion properties[J]. Food Science,2019,40(21):21−27. doi: 10.7506/spkx1002-6630-20181112-125
    [2]
    CHAO, CHEN, YU, et al. Mechanisms underlying the formation of complexes between maize starch and lipids[J]. Journal of Agricultural & Food Chemistry,2018,66(1):272−278.
    [3]
    REDDY C K, CHOI S M, LEE D J, et al. Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch[J]. Food Chemistry,2018,244:136−142. doi: 10.1016/j.foodchem.2017.10.040
    [4]
    OVERTVELDT S V, VERHAEGHE T, JOOSTEN H J, et al. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications[J]. Biotechnology Advances,2015,33(8):1814−1828. doi: 10.1016/j.biotechadv.2015.10.010
    [5]
    HU X P, HUANG T T, MEI J Q, et al. Effects of continuous and intermittent retrogradation treatments on in vitro digestibility and structural properties of waxy wheat starch[J]. Food Chemistry,2015,174:31−36. doi: 10.1016/j.foodchem.2014.11.026
    [6]
    褚绍言, 孙冰华, 田潇凌, 等. 淀粉-脂质复合物的形成及其性质的研究进展[J]. 食品研究与开发,2021,42(12):206−211. [CHU Shaoyan, SUN Binghua, TIAN Xiaoling, et al. Research progress on the formation and properties of starch-lipid complexes[J]. Food Research and Development,2021,42(12):206−211. doi: 10.12161/j.issn.1005-6521.2021.12.032
    [7]
    黄承刚, 李津源, 徐任园, 等. 直链淀粉含量对淀粉-脂肪酸复合物形成及理化特性的影响[J/OL]. 食品工业科技: 1−12[2022-01-18].

    HUANG Chenggang, LI Jinyuan, XU Renyuan, et al. Effects of amylose content on the formation and physicochemical properties of starch-fatty acid complexes[J/OL]. Food Industry Science and Technology: 1−12[2022-01-18].
    [8]
    WANG R, LIU P F, CUI B, et al. Effects of pullulanase debranching on the properties of potato starch -lauric acid complex and potato starch-based film[J]. International Journal of Biological Macromolecules,2020,156(1):1330−1336.
    [9]
    LIU P F, KANG X M, CUI B, et al. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes[J]. Carbohydrate Polymers,2019,222:115000. doi: 10.1016/j.carbpol.2019.115000
    [10]
    LIU P F, GAO W, ZHANG X L, et al. Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase[J]. Carbohydrate Polymers,2020,242:116332. doi: 10.1016/j.carbpol.2020.116332
    [11]
    LIU P F, FANGY S, ZHANG X L, et al. Effects of multienzyme treatment on the physicochemical properties of maize starch-lauric acid complex[J]. Food Hydrocolloids,2020,107:105941. doi: 10.1016/j.foodhyd.2020.105941
    [12]
    WANG S J, CHAO C, CAI J J, et al. Starch-lipid and starch-lipid-protein complexes: A comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(3):1056−1079. doi: 10.1111/1541-4337.12550
    [13]
    VASILLIADOU E, RAPHAELIDES S N, PAPASTERGIADIS E. Effect of heating time and temperature on partially gelatinized starch-fatty acid interactions[J]. LWT-Food Science and Technology,2015,60(2):698−707. doi: 10.1016/j.lwt.2014.10.026
    [14]
    WANG S J, WANG J R, YU J L, et al. Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis[J]. Food Chemistry,2016,190:285−292. doi: 10.1016/j.foodchem.2015.05.086
    [15]
    谢新华, 孙曙光, 王娜, 等. 淀粉-脂类复合物对稻米淀粉黏滞特性的影响[J]. 中国食品学报,2013,13(8):91−95. [XIE Xinhua, SUN Shuguang, WANG Na, et al. Effects of starch-lipid complexes on the viscosity properties of rice starch[J]. Chinese Journal of Food Science,2013,13(8):91−95.
    [16]
    FAROOQ A M, DHITAL S, LI C, et al. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches[J]. International Journal of Biological Macromolecules,2017,107:1080−1085.
    [17]
    ZHANG K, ZHAO D, ZHANG X, et al. Effects of the removal of lipids and surface proteins on the physicochemical and structural properties of green wheat starches[J]. Starch‐Stärke, 2021, 73(1−2).
    [18]
    GUO L, LI J, GUI Y, et al. Improving waxy rice starch functionality through branching enzyme and glucoamylase: Role of amylose as a viable substrate[J]. Carbohydrate Polymers,2019,230:115712.
    [19]
    KANG X, LIU P, GAO W, et al. Preparation of starch-lipid complex by ultrasonication and its film forming capacity[J]. Food Hydrocolloids,2020,99:105340. doi: 10.1016/j.foodhyd.2019.105340
    [20]
    SUN S, JIN Y, HONG Y, et al. Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes[J]. Food Hydrocolloids,2021,110:106224. doi: 10.1016/j.foodhyd.2020.106224
    [21]
    LI X, GAO X, LU J, et al. Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures[J]. LWT-Food Science and Technology,2019:130−137.
    [22]
    李蒙娜. 小麦抗性淀粉的制备及结构性质研究[D]. 合肥: 合肥工业大学, 2019.

    LI Mengna. Preparation and structural properties of wheat resistant starch[D]. Hefei: Hefei University of Technology, 2019.
    [23]
    YUAN, XU D, CUI B, et al. Gelation of K-carrageenan/Konjac glucommanan compound gel: Effect of cyclodextrins[J]. Food Hydrocolloids,2019,87(FEB.):158−164.
    [24]
    THANGAVEL K, DHIVYA K. Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR)[J]. Engineering in Agriculture, Environment and Food,2019,12(2):264−269. doi: 10.1016/j.eaef.2019.02.003
    [25]
    JIAN Z A, MX A, LW B, et al. Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.)[J]. Carbohydrate Polymers,2020,237:116188. doi: 10.1016/j.carbpol.2020.116188
    [26]
    ARGYRI K, ATHANSATOU A, BOUGA M, et al. The potential of an in vitro digestion method for predicting glycemic response of foods and meals[J]. Nutrients,2016,8(4):209. doi: 10.3390/nu8040209
    [27]
    KAWAI K, TAKATO S, SASAKI T, et al. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures[J]. Food Hydrocolloids,2012,27(1):228−234. doi: 10.1016/j.foodhyd.2011.07.003
    [28]
    LU H, YANG Z, YU M, et al. Characterization of complexes formed between debranched starch and fatty acids having different carbon chain lengths[J]. International Journal of Biological Macromolecules,2021,167:595−604. doi: 10.1016/j.ijbiomac.2020.11.198
    [29]
    SABARATNAM N A, THAVA V A, RATNAJOTHI H B, et al. The susceptibility of large and small granules of waxy, normal and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures[J]. Food Research International,2013,51(2):771−782. doi: 10.1016/j.foodres.2013.01.057
    [30]
    CHEN B Y, GUO Z B, MIAO S, et al. Preparation and characterization of lotus seed starch-fatty acid complexes formed by microfluidization[J]. Journal of Food Engineering,2018,237(237):52−59.
    [31]
    CORREIA P R, NUNES M C, BEIRAO-DA-COSTA M L. The effect of starch isolation method on physical and functional properties of Portuguese nuts starches. I. Chestnuts (Castanea sativa Mill. var. Martainha and Longal) fruits[J]. Food Hydrocolloids,2012,27(1):256−263. doi: 10.1016/j.foodhyd.2011.05.010
    [32]
    RAPHAELIDES S N, GEORGIADIS N. Effect of fatty acids on the rheological behaviour of pea starch dispersions during heating[J]. Food Research International,2008,41(1):75−88. doi: 10.1016/j.foodres.2007.10.004
    [33]
    KAUR K, SINGH N. Amylose-lipid complex formation during cooking of rice flour[J]. Food Chemistry,2000,71(4):511−517. doi: 10.1016/S0308-8146(00)00202-8
    [34]
    肖遥, 曹悦, 任顺成, 等. 多酚与玉米淀粉相互作用研究[J]. 河南工业大学学报(自然科学版),2020,41(1):45−51. [XIAO Yao, CAO Yue, REN Shuncheng, et al. Study on the interaction between polyphenols and corn starch[J]. Journal of Henan University of Technology (Natural Science Edition),2020,41(1):45−51.
    [35]
    高金梅, 黄倩, 郭洪梅, 等. 冻融循环处理对玉米淀粉凝胶结构及颗粒理化特性的影响[J]. 现代食品科技,2017,33(2):181−189. [GAO Jinmei, HUANG Qian, GUO Hongmei, et al. Effects of freeze-thaw cycles on the gel structure and granule physicochemical properties of corn starch[J]. Modern Food Science and Technology,2017,33(2):181−189.
    [36]
    陈平生, 黄智君, 王娟. 不同热处理方式对大蕉抗消化淀粉理化性质的影响[J]. 现代食品科技,2012,28(1):9−13. [CHEN Pingsheng, HUANG Zhijun, WANG Juan. Effects of different heat treatment methods on the physicochemical properties of plantain resistant starch[J]. Modern Food Science and Technology,2012,28(1):9−13.
    [37]
    程冰, 张乐乐, 安艳霞, 等. 马铃薯抗性淀粉结构特征及体外消化特性的研究[J]. 食品安全质量检测学报,2021,12(17):6975−6981. [CHENG Bing, ZHANG Lele, AN Yanxia, et al. Structural characteristics and in vitro digestion characteristics of potato resistant starch[J]. Journal of Food Safety and Quality Inspection,2021,12(17):6975−6981.
    [38]
    李光磊, 刘秀芳, 曾洁. 抗性淀粉分子结构特征研究[J]. 食品工业科技,2008(8):156−159. [LI Guanglei, LIU Xiufang, ZENG Jie. Molecular structure characteristics of resistant starch[J]. Science and Technology of Food Industry,2008(8):156−159.
    [39]
    CHEN L, TIAN Y, SU B, et al. Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD[J]. Food Chemistry,2018,242(MAR.1):131−138.
    [40]
    褚绍言, 孙冰华, 马森, 等. 淀粉粒径对小麦淀粉-月桂酸复合物结构及消化性的影响[J]. 河南工业大学学报(自然科学版),2021,42(5):21−29. [CHU Shaoyan, SUN Binghua, MA Sen, et al. Effects of starch particle size on the structure and digestibility of wheat starch-lauric acid complexes[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(5):21−29.
    [41]
    LI W, WU G, LUO Q, et al. Effects of removal of surface proteins on physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat[J]. Journal of Food Science & Technology,2016,53(6):2673−2685.
    [42]
    KIM H S, HUBER K C. Physicochemical properties and amylopectin fine structures of A- and B-type granules of waxy and normal soft wheat starch[J]. Journal of Cereal Science,2010,51(3):256−264. doi: 10.1016/j.jcs.2009.11.015
    [43]
    ZHANG B, LI X, JIA L, et al. Supramolecular structure of A- and B-type granules of wheat starch[J]. Food Hydrocolloids,2013,31(1):68−73. doi: 10.1016/j.foodhyd.2012.10.006
    [44]
    陈海华, 王雨生, 王慧云, 等. 脂肪酸碳链长度与不饱和度对脂肪酸-普通玉米淀粉包合物体外消化性质的影响[J]. 现代食品科技,2016,32(2):19−26. [CHEN Haihua, WANG Yusheng, WANG Huiyun, et al. Effects of fatty acid carbon chain length and unsaturation on in vitro digestibility of fatty acid-common cornstarch inclusion complexes[J]. Modern Food Science and Technology,2016,32(2):19−26.
  • Related Articles

    [1]HOU Wenjuan, QIN Yang, ZHANG Dan, JIANG Xinjie, YU Zhongna, GENG Xin, DU Qijing, JIANG Hongning, YANG Yongxin, FAN Rongbo. Process Optimization and Product Characteristics of Pea Protein Fermented Milk[J]. Science and Technology of Food Industry, 2024, 45(2): 175-182. DOI: 10.13386/j.issn1002-0306.2023040090
    [2]TIAN Mengyang, TIAN Xia, WANG Zhiwei, ZHOU Zhongkai. Process Optimization and Storage Characteristics Analysis of Lactic Acid Bacteria Lyophilized Powder Fermented Whole Wheat Sourdough Bread[J]. Science and Technology of Food Industry, 2023, 44(12): 172-184. DOI: 10.13386/j.issn1002-0306.2022080230
    [3]ZHANG Jiamin, YUAN Bo, WANG Wei, YE Fuyun, TANG Chun, WENG Dehui. Effect of Quality Improvers on the Characteristics of Shallow Fermented Sausage Products and Principal Component Analysis[J]. Science and Technology of Food Industry, 2021, 42(18): 244-251. DOI: 10.13386/j.issn1002-0306.2020120247
    [4]ZHANG Jiamin, WANG Wei, JI Lili, BAI Ting, ZHAO Zhiping, CHEN Lin. Research on the Imitative Natural Air-dried Processing of Shallow Fermented Sausage[J]. Science and Technology of Food Industry, 2021, 42(12): 160-167. DOI: 10.13386/j.issn1002-0306.2020080166
    [5]ZHANG Jiamin, WANG Wei, BAI Ting, JI Lili, WANG Zhengxi, YUAN Bo. Comparison of Regional Characteristics of Sichuan Traditional Sausage and the Analysis of “Shallow Fermentation” Conditions[J]. Science and Technology of Food Industry, 2021, 42(3): 43-47,52. DOI: 10.13386/j.issn1002-0306.2020030367
    [6]SUN Ying-ying, XU Yan-shun, XIA Wen-shui, JIANG Qi-xing, GAO Pei. Changes in Physicochemical and Sensory Quality of Fermented Fish during Storage[J]. Science and Technology of Food Industry, 2020, 41(17): 286-291. DOI: 10.13386/j.issn1002-0306.2020.17.048
    [7]LIU Na, PAN Xing-lu, ZHANG Shuang, YANG Qing-xi, JI Ming-shan, ZHANG Zhi-hong. Effect of Storage and Preservation and Processing on the Flutriafol Residues in Strawberry and Processed Products[J]. Science and Technology of Food Industry, 2018, 39(14): 219-222. DOI: 10.13386/j.issn1002-0306.2018.14.041
    [8]SONG Chun-lu, HU Wen-zhong, CHEN Chen, LI Xiao-bo. Research of fermentation and storage characteristics in Chinese sauerkraut[J]. Science and Technology of Food Industry, 2016, (09): 376-379. DOI: 10.13386/j.issn1002-0306.2016.09.066
    [9]MI Hong-bo, LIU Shuang, LI Xue-peng, LI Jian-rong. Research progress of nature antioxidant in inhibiting lipid oxidation of aquatic product during storage[J]. Science and Technology of Food Industry, 2016, (08): 364-368. DOI: 10.13386/j.issn1002-0306.2016.08.068
    [10]发酵法桑汁饮料加工工艺的研究[J]. Science and Technology of Food Industry, 1999, (05): 35-37. DOI: 10.13386/j.issn1002-0306.1999.05.012
  • Cited by

    Periodical cited type(15)

    1. 袁惠君,徐琰莹,余诗曼,冯欢,袁毅君,张欢欢,何苗苗. 一株抗真菌卡利比克迈耶氏酵母(Meyerozymacaribbica lut-Y1)的鉴定及其抑菌活性. 食品研究与开发. 2025(03): 181-187 .
    2. 申旻,陈雅楠,刘瑶,刘晨,朱晨辉,薛文娇. 白酒酿造副产物黄水中产酯酵母菌株分离鉴定及产酯条件优化. 现代农业科技. 2024(12): 154-159+166 .
    3. 马吉喆,李镕涛,陆筑凤,李加友,徐涛. 提高酿酒酵母耐受性能的研究进展. 食品工业. 2023(01): 178-182 .
    4. 王丹,江春阳,邓乔晟,杨勤,周浓. 地参发酵酒中专用酵母菌的筛选、鉴定及特性研究. 食品科技. 2023(05): 18-25 .
    5. 潘庆珉,杨洁,岳海涛,申彤. 阿勒泰地区酸驼乳中酵母菌的分离鉴定及耐受性分析. 中国乳品工业. 2023(06): 27-31+39 .
    6. 赵广河,胡梦琪,陆玺文,赵丰丽. 桃金娘果酒酵母菌的筛选鉴定及生长特性分析. 中国酿造. 2023(09): 103-108 .
    7. 冼佳露,李理. 三类传统发酵食品中蜡样芽孢杆菌的污染状况研究. 中国酿造. 2023(12): 33-37 .
    8. 尹晓燕,王羽,牛秋红. 根系土壤假丝酵母菌Candida sp. YIN9对大丽轮枝菌和全齿复活线虫的抑制作用. 生物安全学报. 2022(01): 56-63 .
    9. 徐婉莹,戚晓雪,何晓霞,徐莹. 逆境对GST基因过表达库德毕赤酵母G43生长及脱镉能力的影响. 食品安全质量检测学报. 2022(11): 3620-3626 .
    10. 袁野,李云成,孟凡冰,焦晓磊,王欣瑶,罗永琪. 贵州红酸汤研究进展. 粮食与油脂. 2022(06): 19-23 .
    11. 乔旭辉,禄亚洲. 察隅县野生沙棘果实酵母菌分离鉴定. 高原农业. 2022(04): 362-368+386 .
    12. 王辉,袁婷玉,白卫东,赵文红,黄桂颖,杨婉媛. 青梅自然发酵液中酵母菌的分离鉴定及特性研究. 食品科技. 2021(08): 16-21 .
    13. 秦宇蒙,周笑犁,管庆林,刘云寒,吴承木. 基于高通量测序分析番茄自然发酵过程中的真菌多样性. 福建农业学报. 2021(09): 1110-1118 .
    14. 闫洪洋,黄启蒙,蔡兴华,张立立,徐志强,马林,李萌. 产香菌株的分离鉴定及其发酵产物在卷烟加香中的应用. 轻工学报. 2021(06): 47-54 .
    15. 韦玉梅,张文倩,朱闪闪,李杨,雷勇辉,孙燕飞. 果蔬酵素中优良酵母菌的分离、鉴定及耐受性研究. 中国酿造. 2021(12): 87-92 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return