WANG Juan, SUN Ruilin, LIU Xin, et al. Study on the Process Optimization of Quinoa Black Medlar Yogurt and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 240−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010075.
Citation: WANG Juan, SUN Ruilin, LIU Xin, et al. Study on the Process Optimization of Quinoa Black Medlar Yogurt and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(12): 240−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010075.

Study on the Process Optimization of Quinoa Black Medlar Yogurt and Its Antioxidant Activity

More Information
  • Received Date: January 10, 2022
  • Available Online: April 14, 2022
  • Using quinoa and black medlar as compound additives, the adhesion and sensory scores were used as indicators to investigate the effects of quinoa slurry, black medlar powder, xylitol and lactic acid bacteria inoculation on quinoa black medlar sugar free yogurt. For the influence of quality, orthogonal experiment was carried out on the basis of single factor experiments to optimize the yogurt craft formula, and conduct research on physiochemical indexes, microbiological indexes, lactic acid bacteria counts and antioxidant activities. Results showed that the optimal processing parameters were as follows: Guinoa slurry 25%, black medlar powder 1.0%, xylitol 8%, lactic acid bacteria inoculation 1.0%. The yogurt made under this process had rich aroma of quinoa and black medlar, a sensory score of 93.2 and an adhesion of −2.35 N. At the same time, the physiochemical and microbiological indexes, lactic acid bacteria counts met the corresponding national food safety standard for yogurt. The IC50 of DPPH and hydroxyl radicals in quinoa black medlar yogurt were 6.1 and 8.9 mg/mL, respectively, and the scavenging abilities were higher than those of the control group (35.9 and 40.5 mg/mL). The scavenging ability of DPPH and hydroxyl radical increased in different degrees during storage.
  • [1]
    SHARMA V, CHANDRA S, DWIVEDI P, et al. Quinoa (Chenopodium quinoa Willd.): A nutritional healthy grain[J]. International Journal of Advanced Research,2015,3(9):725−736.
    [2]
    VILCACUNDO R, HERNÁNDEZ-LEDESMA B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.)[J]. Current Opinion in Food Science,2017,14:1−6.
    [3]
    陈志婧, 廖成松. 7个不同品种藜麦营养成分比较分析[J]. 食品工业科技,2020,41(23):266−270. [CHEN Z J, LIAO C S. Comparative of 7 different varieties of Chenopodium quinoa[J]. Science and Technology of Food Industry,2020,41(23):266−270.

    CHEN Z J, LIAO C S. Comparative of 7 different varieties of Chenopodium quinoa[J]. Science and Technology of Food Industry, 2020, 41(23): 266-270.
    [4]
    吴立根, 屈凌波, 王岸娜, 等. 加工方式对藜麦营养及生物活性影响的研究进展[J]. 粮食与油脂,2020,33(2):10−13. [WU L G, QU L B, WANG A N, et al. Research progress on the effects of processing on nutritional and biological activity of quinoa[J]. Cereals & Oils,2020,33(2):10−13. doi: 10.3969/j.issn.1008-9578.2020.02.004

    WU L G, QU L B, WANG A N, et al. Research progress on the effects of processing on nutritional and biological activity of quinoa[J]. Cereals & Oils, 2020, 33(2): 10-13. doi: 10.3969/j.issn.1008-9578.2020.02.004
    [5]
    于跃, 顾音佳. 藜麦的营养物质及生物活性成分研究进展[J]. 粮食与油脂,2019,32(5):4−6. [YU Y, GU Y J. Research progress on nutrients and bioactive components of quinoa (Chenopodium quinoa Willd. )[J]. Cereals & Oils,2019,32(5):4−6. doi: 10.3969/j.issn.1008-9578.2019.05.002

    YU Y, GU Y J. Research progress on nutrients and bioactive components of quinoa (Chenopodium quinoa Willd. )[J]. Cereals & Oils, 2019, 32(5): 4-6. doi: 10.3969/j.issn.1008-9578.2019.05.002
    [6]
    STIKIC R, GLAMOCLIJA D, DEMIN M, et al. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations[J]. Journal of Cereal Science,2012,55(2):132−138. doi: 10.1016/j.jcs.2011.10.010
    [7]
    陈怡雪. 黑枸杞成分分析及其提取物抗氧化和抑制α-葡萄糖苷酶活性研究[D]. 郑州: 郑州大学, 2020

    CHEN Y X. Study on the component analysis and antioxidant and α-glucosidase inhibitory activity of lyciun ruthenicum murray extract[D]. Zhengzhou: Zhengzhou University, 2020.
    [8]
    周琪乐, 罗诗萌, 龚凌慧, 等. 黑果枸杞风味品质的分析研究[J]. 食品安全质量检测学报,2021,12(21):8381−8389. [ZHOU Q L, LUO S M, GONG L H, et al. Study on flavor quality of Lycium ruthenicum Murr[J]. Journal of Food Safety and Quality,2021,12(21):8381−8389.

    ZHOU Q L, LUO S M, GONG L H et al. Study on flavor quality of Lycium ruthenicum Murr[J]. Journal of Food Safety and Quality, 2021, 12(21): 8381-8389.
    [9]
    LIU B, XU Q Q, SUN Y J. Black goji berry (Lycium ruthenicum) tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (Lycium barbarum) tea[J]. Food Quality and Safety,2020,4(4):193−201. doi: 10.1093/fqsafe/fyaa022
    [10]
    LIU Z G, TANG X H, LIU C, et al. Ultrasonic extraction of anthocyanins from Lycium ruthenicum Murr. and its antioxidant activity[J]. Food Science & Nutrition,2020,8(6):2642−2651.
    [11]
    许英瑞, 朱妍丽, 薛元泰, 等. 黑枸杞多糖的提取及其对副干酪乳杆菌L9、嗜热链球菌G2生长特性及抗氧化能力的影响[J]. 食品与发酵工业,2021,47(17):179−185. [XU Y R, ZHU Y L, XUE Y T, et al. Optimized ultrasonic extraction of Lycium ruthenicum polysaccharides and its effect on the growth and antioxidant capacity of Lactobacillus paracasei L9 and Streptococcus thermophilus G2[J]. Food and Fermentation Industries,2021,47(17):179−185.

    XU Y R, ZHU Y L, XUE Y T, et al. Optimized ultrasonic extraction of Lycium ruthenicum polysaccharides and its effect on the growth and antioxidant capacity of Lactobacillus paracasei L9 and Streptococcus thermophilus G2[J]. Food and Fermentation Industries, 2021, 47(17): 179-185.
    [12]
    陈艾嘉. 木糖醇酸奶加工工艺研究[D]. 广州: 华南农业大学, 2018

    CHEN A J. Study on processing of xylitol yogurt[D]. Guangzhou: South China Agricultural University, 2018.
    [13]
    杨露西, 李强, 邓由飞, 等. 藜麦酸奶工艺及其品质研究[J]. 中国酿造,2019,38(9):201−206. [YANG L X, LI Q, DENG Y F, et al. Processing technology and quality of quinoa yoghurt[J]. China Brewing,2019,38(9):201−206. doi: 10.11882/j.issn.0254-5071.2019.09.039

    YANG L X, LI Q, DENG Y F, et al. Processing technology and quality of quinoa yoghurt[J]. China Brewing, 2019, 38(9): 201-206. doi: 10.11882/j.issn.0254-5071.2019.09.039
    [14]
    王彦平, 申飞, 李俊华, 等. 参薯藜麦酥性饼干工艺优化及体外消化特性研究[J/OL]. 食品工业科技: 1−10[2022-04-02] doi: 10.13386/j.issn1002-0306.2020090200.

    WANG Y P, SHEN F, LI J H, et al. Study on the optimization of purple yam quinoa crisp biscuit and its in vitro digestion characteristics[J/OL]. Science and Technology of Food Industry: 1−10[2022-04-02]. doi: 10.13386/j.issn1002-0306.2020090200.
    [15]
    秦丹丹, 曹慧馨, 白洋, 等. 黑木耳黑枸杞复合饮料研制及其体外抗氧化性[J]. 食品研究与开发,2020,41(3):108−116. [QIN D D, CAO H X, BAI Y, et al. Study on preparation of Auricularia auricular and Lycium ruthenicum Murr. compound beverage and its antioxidant activity[J]. Food Research and Development,2020,41(3):108−116.

    QIN D D, CAO H X, BAI Y, et al. Study on preparation of auricularia auricular and lycium ruthenicum murr. compound beverage and its antioxidant activity[J]. Food Research And Development, 2020, 41(3): 108-116.
    [16]
    孙子羽, 满都拉, 陈佳, 等. 黑枸杞乳清酒发酵工艺优化及挥发性风味物质分析[J]. 中国酿造,2019,38(11):54−58. [SUN Z Y, MANDLLA, CHEN J, et al. Optimization of fermentation process of black medlar whey wine and analysis of its volatile flavor substances[J]. China Brewing,2019,38(11):54−58. doi: 10.11882/j.issn.0254-5071.2019.11.011

    SUN Z Y, MANDLLA, CHEN J, et al. Optimization of fermentation process of black medlar whey wine and analysis of its volatile flavor substances[J]. China Brewing, 2019, 38(11): 54-58. doi: 10.11882/j.issn.0254-5071.2019.11.011
    [17]
    李子叶. 不同酸奶发酵剂的发酵性能及其产品功能活性的研究[D]. 哈尔滨: 东北农业大学, 2019

    LI Z Y. Study on fermentation performance of different starter culture and evaluation of its functional bioactivity in yogurt[D]. Harbin: Northeast Agricultural University, 2019.
    [18]
    中国人民共和国国家卫生和计划生育委员会. GB/T 5009.6-2016食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People's Republic of China. GB/T 5009.6-2016 National Food Safety Standard. Determination of fat in food[S]. Beijing: China Standards Press, 2016.
    [19]
    中国人民共和国国家卫生健康委员会. GB 5009.5-2016食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People’s Republic of China. GB 5009.5-2016 National Food Safety Standard. Determination of protein in food[S]. Beijing: China Standards Press, 2016.
    [20]
    中国人民共和国国家卫生健康委员会. GB 5009.239-2016食品安全国家标准 食品酸度的测定[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People's Republic of China. GB 5009.239-2016 National Food Safety Standard. Determination of acidity of food[S]. Beijing: China Standards Press, 2016.
    [21]
    中国人民共和国国家卫生健康委员会. GB 4789.35-2016食品安全国家标准 食品微生物学检验 乳酸菌检验[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People's Republic of China. GB 4789.35-2016 National Food Safety Standard. Microbiological examination. Determination of lactic acid bacteria[S]. Beijing: China Standards Press, 2016.
    [22]
    中国人民共和国国家卫生健康委员会. GB 4789.3-2016食品安全国家标准 食品微生物学检验 大肠菌群测定[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People’s Republic of China. GB 4789.3-2016 National Food Safety Standard. Microbiological examination. Determination of Bacterium coli[S]. Beijing: China Standards Press, 2016.
    [23]
    中国人民共和国国家卫生健康委员会. GB 4789.15-2016食品安全国家标准 食品微生物学检验 霉菌和酵母计数[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People's Republic of China. GB 4789.15-2016 National Food Safety Standard. Microbiological examination. Mold and yeast count[S]. Beijing: China Standards Press, 2016.
    [24]
    中国人民共和国国家卫生健康委员会. GB 4789.10-2016食品安全国家标准 食品微生物学检验 金黄色葡萄球菌检验[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People's Republic of China. GB 4789.10-2016 National Food Safety Standard. Microbiological examination. Examination of Staphylococcus aureus[S]. Beijing: China Standards Press, 2016.
    [25]
    中国人民共和国国家卫生健康委员会. GB 4789.4-2016食品安全国家标准 食品微生物学检验 沙门氏菌检验[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People’s Republic of China. GB 4789.4-2016 National Food Safety Standard. Microbiological analysis. Examination of food Salmonella[S]. Beijing: China Standards Press, 2016.
    [26]
    WU X Y, LIANG L H, ZOU Y, et al. Aqueous two-phase extraction, identification and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.)[J]. Food Chemistry,2011,129(2):443−453. doi: 10.1016/j.foodchem.2011.04.097
    [27]
    李郭浪, 刘静, 李霞, 等. 山药山楂酸奶的贮藏品质及胃肠液环境下的抗氧化性[J]. 中国酿造,2021,40(5):124−128. [LI G L, LIU J, LI X, et al. Storage quality of yam and hawthorn yogurt and its antioxidation in simulated gastrointestinal fluid[J]. China Brewing,2021,40(5):124−128. doi: 10.11882/j.issn.0254-5071.2021.05.023

    LI G L, LIU J, LI X, et al. Storage quality of yam and hawthorn yogurt and its antioxidation in simulated gastrointestinal fluid[J]. China Brewing, 2021, 40(5): 124-128. doi: 10.11882/j.issn.0254-5071.2021.05.023
    [28]
    DAOU C, ZHANG H, LAGNIKA C, et al. In-vitro fermentation by human fecal bacteria and bile salts binding capacity of physical modified defatted rice bran dietary fiber[J]. Food and Nutrition Sciences,2014,5(12):1114−1120. doi: 10.4236/fns.2014.512121
    [29]
    王然, 张春玉, 贾燕妮. 酸浆果蜂蜜酸奶发酵及贮藏过程中抗氧化活性的变化研究[J]. 中国酿造,2019,38(1):158−163. [WANG R, ZHANG C Y, JIA Y N. Changes of antioxidant activity of Fructus physalis honey yoghourt during fermentation and storage period[J]. China Brewing,2019,38(1):158−163. doi: 10.11882/j.issn.0254-5071.2019.01.032

    WANG R, ZHANG C Y, JIA Y N. Changes of antioxidant activity of Fructus physalis honey yoghourt during fermentation and storage period[J]. China Brewing, 2019, 38(1): 158-163. doi: 10.11882/j.issn.0254-5071.2019.01.032
  • Related Articles

    [1]ZHU Cheng-hao, TANG Hui, CHAI Sheng-feng, LIU Zhi-xin, WANG Ting, LI Yu-liang. Analysis and Evaluation of Nutritional Components from Leaves and Flowers of Camellia nitidissima in Grafted and Seedling Trees[J]. Science and Technology of Food Industry, 2019, 40(20): 329-333,347. DOI: 10.13386/j.issn1002-0306.2019.20.053
    [2]FANG Ling, MA Hai-xia, LI Lai-hao, YANG Xian-qing, RONG Hui, ZHU Chang-bo. Analysis and evaluation of nutrient composition in Ostrea rivularis from south China sea coast[J]. Science and Technology of Food Industry, 2018, 39(2): 301-307,313. DOI: 10.13386/j.issn1002-0306.2018.02.056
    [3]ZHU Yan-chao, LOU Yong-jiang, XIONG Guo-tong, LIU Jian, LIU Ting, LOU Yue. Composition analysis and evaluation of Goosefish liver nutrition[J]. Science and Technology of Food Industry, 2017, (05): 356-360. DOI: 10.13386/j.issn1002-0306.2017.05.059
    [4]WANG Ting-ting, GAO Guan-shi, WU Su-rui, YANG Zhen-fu, GUI Ming-ying. Analysis of nutritional compositions and evaluation of nutritional quality for Polyporus ellisii[J]. Science and Technology of Food Industry, 2016, (21): 342-346. DOI: 10.13386/j.issn1002-0306.2016.21.058
    [5]MA Yi- dan, LIU Hong, YAN Rui-xin, MA Si-cong, XUE Bing-xiang, WANG Qian. Analysis and evaluation of nutrient content of Synsepalum dulcificum seed[J]. Science and Technology of Food Industry, 2016, (13): 346-351. DOI: 10.13386/j.issn1002-0306.2016.13.063
    [6]CHE Yu-hong, YANG Bo, Aisajan·Mamat, GUO Chun-miao, ZHANG Jun, MA Wen-peng, JIANG Ping. Analysis and evaluation of nutritional composition of big quince in Shache county of Xinjiang[J]. Science and Technology of Food Industry, 2015, (24): 345-348. DOI: 10.13386/j.issn1002-0306.2015.24.067
    [7]JIANG Fang-yan, SONG Wen-ming, YANG Ning, HUANG Hai. Analysis and evaluation of nutrient content of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2014, (24): 356-359. DOI: 10.13386/j.issn1002-0306.2014.24.067
    [8]CUI Ling-jun, WANG Bao-ping, QIAO Jie, WANG Wei-wei, ZHANG Jian-guo. Analysis and evaluation of nutritive composition of four species of Paulownia flowers[J]. Science and Technology of Food Industry, 2014, (24): 338-341. DOI: 10.13386/j.issn1002-0306.2014.24.063
    [9]YU Gang, ZHANG Hong-jie, YANG Shao-ling, YANG Xian-qing, HAO Shu-xian, ZHANG Peng, LIN Wan-ling. Nutritional component analysis and quality evaluation of Ryukyu squid in South China sea[J]. Science and Technology of Food Industry, 2014, (18): 358-361. DOI: 10.13386/j.issn1002-0306.2014.18.072
    [10]LIU Shu-chen, LI Ren-wei, LIAO Ming-tao, ZHAO Qiao-ling, LIN Sen-sen, DAI Zhi-yuan. Nutritional components analysis and quality evaluation of different muscle parts of bigeye tuna[J]. Science and Technology of Food Industry, 2013, (23): 340-343. DOI: 10.13386/j.issn1002-0306.2013.23.065
  • Cited by

    Periodical cited type(10)

    1. 白佳丽,崔思琪,张瀚文,李雨鑫,古昕雨,雷虹,李文辉. 果蔬清洗机对蔬菜中营养物质的影响. 黑龙江大学工程学报(中英俄文). 2024(01): 104-112 .
    2. 王伟. 臭氧在植物保护实践中的应用与展望. 湖北植保. 2024(02): 18-20 .
    3. 叶云霞,赵英杰. 去除果蔬农药残留方法的研究现状. 农机使用与维修. 2024(08): 119-121 .
    4. 唐雪梅,纪铖臻,卢明瑞,温瑞明,魏静,吴龙. 热带果蔬农药残留处理方法及降解技术研究进展. 食品安全质量检测学报. 2024(19): 1-12 .
    5. 陈思达,张凤英,罗秋水. 果蔬解毒清洗机清洗效果探讨. 生物灾害科学. 2023(02): 249-255 .
    6. 杨书园,蔡颖婷,黄超,余叶贝,王珺菽,伍洋涛,卜令君,周石庆. 掺硼金刚石膜电极除菌除农药性能及机理探讨. 中国给水排水. 2023(13): 103-108 .
    7. 黄友举,初梦圆,路晨,于延冲. 臭氧水降解土壤农药残留研究. 安徽农业科学. 2023(20): 70-72+117 .
    8. 陆胜民,王璐,郑美瑜,汪丽霞,赵四清,朱卫东. 干燥方式和臭氧对胡柚小青果干品有效成分和农残的影响. 保鲜与加工. 2022(08): 71-75+81 .
    9. 孙倩,吴洪生,丁军,王娜,张磊,程诚,石陶然,Faheem Mohamud,倪妮,田伟,吴云成,单正军. 活性氧降解水中乐果效率及机理分析. 环境科学与技术. 2022(S1): 1-6 .
    10. 杨佳洁,李敏敏,肖欧丽,赵浩然,陈捷胤,戴小枫,张民伟,孔志强. 果蔬加工过程农药残留行为研究及加工因子在风险评估中的应用. 食品安全质量检测学报. 2022(22): 7255-7263 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (203) PDF downloads (25) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return