Citation: | LIANG Jingyi, GUO Fan, ZHAO Ke, et al. Effect of Exogenous γ-Aminobutyric Acid on the Quality and γ-Aminobutyric Acid Metabolism of Fresh-cut Pumpkins[J]. Science and Technology of Food Industry, 2022, 43(19): 385−392. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010017. |
[1] |
王凯凯, 孙朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成机理及富集方法的研究进展[J]. 食品工业科技,2018,39(14):323−329. [WANG K K, SUN M, SONG J M, et al. Research progress on the mechanism of γ-aminobutyric acid (GABA) formation and enrichment methods[J]. Food Industry Science and Technology,2018,39(14):323−329.
WANG K K, SUN M, SONG J M, et al. Research progress on the mechanism of γ-aminobutyric acid (GABA) formation and enrichment methods[J]. Food Industry Science and Technology, 2018, 39(14): 323-329.
|
[2] |
PIET R, KALIL B, MCLENNAN T, et al. Dominant neuropeptide cotransmission in kisspeptin-GABA regulation of GnRH neuron firing driving ovulation[J]. J Neurosci,2018,38(28):6310−6322. doi: 10.1523/JNEUROSCI.0658-18.2018
|
[3] |
YANG R, GUO Y, WANG S, et al. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress[J]. Journal of Food and Drug Analysis,2015,23(2):287−293. doi: 10.1016/j.jfda.2014.07.004
|
[4] |
STEWARD F C, THOMPSON J F, DENT C E. γ-Aminobutyric acid: A constituent of the potato tuber?[J]. Science,1949,110:439−440.
|
[5] |
KHAN M, JALIL S U, CHOPRA P, et al. Role of GABA in plant growth, development and senescence[J]. Plant Gene,2021(4):100283.
|
[6] |
余光辉, 涂奕霏, 李承龙, 等. 植物GABA信号途径研究[J]. 中南民族大学学报:自然科学版,2021,40(5):427−477. [YU G H, TU Y F, LI C L, et al. Study on GABA signaling pathway in plants[J]. Journal of Central South University for Nationalities (Natural Science Edition),2021,40(5):427−477.
YU G H, TU Y F, LI C L, et al. Study on GABA signaling pathway in plants[J]. Journal of Central South University for Nationalities (Natural Science Edition), 2021, 40(5): 6.
|
[7] |
朱云辉, 郭元新, 杜传来, 等. 低氧联合NaCl胁迫下外源Ca2+对发芽苦荞γ-氨基丁酸富集的影响[J]. 中国粮油学报,2017,32(1):17−23. [ZHU Y H, GUO Y X, DU C L, et al. Effect of exogenous Ca2+ on γ-aminobutyric acid enrichment in germinating buckwheat under hypoxia combined with NaCl stress[J]. Chinese Journal of Cereals and Oils,2017,32(1):17−23. doi: 10.3969/j.issn.1003-0174.2017.01.002
ZHU Y H, GUO Y X, DU C L, et al. Effect of exogenous Ca2+ on γ-aminobutyric acid enrichment in germinating buckwheat under hypoxia combined with NaCl stress[J]. Chinese Journal of Cereals and Oils, 2017, 32(1): 7. doi: 10.3969/j.issn.1003-0174.2017.01.002
|
[8] |
白青云, 曾波, 顾振新. 低氧通气对发芽粟谷中γ-氨基丁酸含量的影响[J]. 食品科学,2010(9):49−53. [BAI Q Y, ZENG B, GU Z X. Effect of hypoxic aeration on the content of γ-aminobutyric acid in germinated corn grains[J]. Food Science,2010(9):49−53.
BAI Q Y, ZENG B, GU Z X. Effect of hypoxic aeration on the content of γ-aminobutyric acid in germinated corn grains[J]. Food Science, 2010(9): 5.
|
[9] |
侯莹, 祁雪鹤, 任慧, 等. 鲜切处理对猕猴桃中γ-氨基丁酸富集的影响[J]. 食品工业科技,2020,41(20):58−63,84. [HOU Y, QI X H, REN H, et al. Effect of fresh-cutting treatment on the enrichment of γ-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology,2020,41(20):58−63,84.
HOU Y, QI X H, REN H, et al. Effect of fresh-cutting treatment on the enrichment of γ-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology, 2020, 41(20): 7.
|
[10] |
WANG K K, XU F, CAO S F, et al. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots[J]. Postharvest Biology and Technology,2019,152:111−117. doi: 10.1016/j.postharvbio.2019.03.005
|
[11] |
HOU Y, REN H, WANG K K, et al. Influence of fresh-cut process on γ-aminobutyric acid (GABA) metabolism and sensory properties in carrot[J]. Journal of Food Science and Technology,2021(9):1−10.
|
[12] |
MALEKZADEH P, KHARA J, HEYDARI R. Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress[J]. Physiology and Molecular Biology of Plants,2014,20(1):133−137. doi: 10.1007/s12298-013-0203-5
|
[13] |
LIU B, LI Y, ZHANG X, et al. Exogenous GABA prevents Marssonina apple blotch damage in ‘Royal Gala’ apple seedlings[J]. Scientia Horticulturae,2022,299:111005. doi: 10.1016/j.scienta.2022.111005
|
[14] |
马玮, 史玉滋, 段颖, 等. 南瓜果实淀粉和可溶性固形物研究进展[J]. 中国瓜菜,2018,31(11):1−5. [MA W, SHI Y Z, DUAN Y, et al. Research progress on starch and soluble solids in pumpkin fruits[J]. Chinese Squash,2018,31(11):1−5. doi: 10.3969/j.issn.1673-2871.2018.11.001
MA W, SHI Y Z, DUAN Y, et al. Research progress on starch and soluble solids in pumpkin fruits[J]. Chinese Squash, 2018, 31(11): 5. doi: 10.3969/j.issn.1673-2871.2018.11.001
|
[15] |
LIANG J Y, GUO F, CAO S F, et al. γ-Aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins[J]. Plant Physiology and Biochemistry,2022,180:9−16. doi: 10.1016/j.plaphy.2022.03.029
|
[16] |
郭丹, 韩英群, 郝义. 不同品种苹果冷藏期间品质与生理变化[J]. 食品科学,2016,37(22):289−294. [GUO D, HAN Y Q, HAO Y. Quality and physiological changes of different varieties of apples during refrigeration[J]. Food Science,2016,37(22):289−294. doi: 10.7506/spkx1002-6630-201622044
GUO D, HAN Y Q, HAO Y. Quality and physiological changes of different varieties of apples during refrigeration[J]. Food Science, 2016, 37(22): 289-294 doi: 10.7506/spkx1002-6630-201622044
|
[17] |
AL-QURAAN N A, LOCY R D, SINGH N K. Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants[J]. Plant Biotechnology Reports,2011,5(3):225−234. doi: 10.1007/s11816-011-0174-3
|
[18] |
HU X, XU Z, XU W, et al. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress[J]. Plant Physiology and Biochemistry,2015,92:1−10. doi: 10.1016/j.plaphy.2015.04.006
|
[19] |
BARTYZEL I, PELCZAR K, PASZKOWSKI A. Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress[J]. Biologia Plantarum,2003,47(2):221−225.
|
[20] |
DEEWATTHANAWONG R, ROWELL P, WATKINS C B. γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes[J]. Postharvest Biology and Technology,2010,57(2):97−105. doi: 10.1016/j.postharvbio.2010.03.007
|
[21] |
宋春波, 方怡楠, 吴哲铭, 等. γ-氨基丁酸对低温胁迫下桃果实多胺代谢的影响[J]. 果树学报,2016,33(5):552−562. [SONG C B, FANG Y N, WU Z M, et al. Effect of γ-aminobutyric acid on polyamine metabolism in peach fruit under low temperature stress[J]. Journal of Fruit Trees,2016,33(5):552−562.
SONG C B, FANG Y N, WU Z M, et al. Effect of γ-aminobutyric acid on polyamine metabolism in peach fruit under low temperature stress[J]. Journal of Fruit Trees, 2016, 33(5): 552-562.
|
[22] |
GAO H, JIA Y, GUO S, et al. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance[J]. Journal of Plant Physiology,2011,168(11):1217−1225. doi: 10.1016/j.jplph.2011.01.022
|
[23] |
ŠEBELA M, BRAUNER F, RADOVÁ A, et al. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2000,1480(1−2):329−341. doi: 10.1016/S0167-4838(00)00086-8
|
[24] |
WANG M, LI J, FAN L. Quality changes in fresh-cut asparagus with ultrasonic-assisted washing combined with cinnamon essential oil fumigation[J]. Postharvest Biology and Technology,2022,187:111873. doi: 10.1016/j.postharvbio.2022.111873
|
[25] |
ZHA Z, TANG R, WANG C, et al. Riboflavin inhibits browning of fresh-cut apples by repressing phenolic metabolism and enhancing antioxidant system[J]. Postharvest Biology and Technology,2022,187:111867. doi: 10.1016/j.postharvbio.2022.111867
|
[26] |
GIORDANO L, BOITEUX L, QUEZADODUVAL A, et al. 'BRS Tospodoro': A high lycopene processing tomato cultivar adapted to organic cropping systems and with multiple resistance to pathogens[J]. Horticultura Brasileira,2010,28(2):241−245.
|
[27] |
PALMA F, CARVAJAL F, JIMÉNEZ-MUÑOZ R, et al. Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage[J]. Plant Physiology and Biochemistry,2019,136:188−195. doi: 10.1016/j.plaphy.2019.01.023
|
[28] |
LI Y, LIU B, PENG Y, et al. Exogenous GABA alleviates alkaline stress in Malus hupehensis by regulating the accumulation of organic acids[J]. Scientia Horticulturae,2020,261:108982. doi: 10.1016/j.scienta.2019.108982
|
[29] |
JI J, SHI Z, XIE T, et al. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses[J]. Ecotoxicology and Environmental Safety,2020,193:110322. doi: 10.1016/j.ecoenv.2020.110322
|
[30] |
LEE J H, KIM Y J, JEONG D Y, et al. Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer[J]. Molecular Biology Reports,2010,37(7):3455−3463. doi: 10.1007/s11033-009-9937-0
|
[31] |
DAŞ Z A, DIMLIOĞLU G, BOR M, et al. Zinc induced activation of GABA-shunt in tobacco (Nicotiana tabaccum L.)[J]. Environmental and Experimental Botany,2016,122:78−84. doi: 10.1016/j.envexpbot.2015.09.006
|
[32] |
LI C, ZHU J, SUN L, et al. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism[J]. Plant Physiology and Biochemistry,2021,169:92−101. doi: 10.1016/j.plaphy.2021.11.008
|
[33] |
TU J, LIU G, JIN Y, et al. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity[J]. Industrial Crops and Products,2022,177:114485. doi: 10.1016/j.indcrop.2021.114485
|
[34] |
KUMAR N, GAUTAM A, DUBEY A K, et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis[J]. Ecotoxicology and Environmental Safety,2019,173:15−27. doi: 10.1016/j.ecoenv.2019.02.017
|
[35] |
YIN Y, YANG R, GUO Q, et al. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean[J]. European Food Research and Technology,2014,238(5):781−788. doi: 10.1007/s00217-014-2156-5
|
[36] |
GUO Y, YANG R, CHEN H, et al. Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia[J]. European Food Research and Technology,2012,234(4):679−687. doi: 10.1007/s00217-012-1678-y
|
[37] |
XING S, JUN Y, HUA Z, et al. Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max L. Merr. roots[J]. Plant Physiol Biochem,2007,45(8):560−566. doi: 10.1016/j.plaphy.2007.05.007
|
[38] |
XIE K, WU C, CHI Z, et al. Enhancement of γ-aminobutyric acid (GABA) and other health-promoting metabolites in germinated broccoli by mannose treatment[J]. Scientia Horticulturae,2021,276:109706. doi: 10.1016/j.scienta.2020.109706
|
[39] |
陈炜, 成铁龙, 纪敬, 等. 杨树GABA支路3个基因家族的鉴定和表达分析[J]. 南京林业大学学报(自然科学版),2020,44(5):67−77. [CHEN W, CHENG T L, JI J, et al. Identification and expression analysis of three gene families in the GABA branch of Populus tremula[J]. Journal of Nanjing Forestry University (Natural Science Edition),2020,44(5):67−77.
CHEN W, CHENG T L, JI J, et al. Identification and expression analysis of three gene families in the GABA branch of Populus tremula[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 67-77.
|
1. |
宗子歆,姚子昂,张玉龙,陈鑫,曹际娟,胡冰. Ⅰ型胶原蛋白的结构、提取及应用研究进展. 食品研究与开发. 2025(04): 169-176 .
![]() | |
2. |
龚受基,覃媚,戴梓茹,蒋红明,郭德军. 响应面法优化相思藤黄酮提取工艺及其体外抗氧化活性分析. 食品工业科技. 2024(06): 178-185 .
![]() | |
3. |
罗联钰,徐清清,朱金燕,魏维鑫,吴清朋,刘家光. 超声前处理对牡蛎蛋白水解度的影响. 食品工业. 2024(04): 17-22 .
![]() | |
4. |
武婷,康明丽,程雅如,申彤,李依孜. 微波辅助酶法提取香菇柄蛋白工艺研究. 粮食与油脂. 2024(09): 129-134 .
![]() | |
5. |
张倩,张文博,陈滢竹,姜旭,汤璐,王刚,李艳丽. 榛蘑蛋白提取工艺的优化研究. 中国调味品. 2023(05): 118-124 .
![]() | |
6. |
窦容容,赵春青,颜子恒,桑亚新,孙纪录,亢春雨. 超声波对鲟鱼皮酸溶性胶原蛋白提取及理化特性的影响. 中国食品学报. 2023(10): 125-135 .
![]() | |
7. |
李璐,李鹏,孙慧娟,马凯华,马俪珍,李玲. 响应面优化超声波辅助革胡子鲶鱼鱼头汤熬煮工艺. 肉类研究. 2022(02): 27-32 .
![]() | |
8. |
黄可承,宫萱,唐嘉诚,陈彦婕,包建强. 水产品副产物胶原蛋白制备方法及应用. 精细化工. 2022(09): 1757-1766 .
![]() | |
9. |
赵琼瑜,胡鉴,李彩燕,徐树杰,宋伟. 超声波辅助鳖甲脱钙工艺优化及其对胶原蛋白生化特征的影响. 食品工业科技. 2022(22): 39-51 .
![]() | |
10. |
李家柔,倪剑波,何静怡,许惠雅,井璐楠,施文正. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性. 渔业现代化. 2022(06): 127-134 .
![]() | |
11. |
陈文娟. 响应面法优化超声协同胃蛋白酶提取鲣鱼皮胶原蛋白的工艺研究. 延边大学农学学报. 2022(04): 60-66 .
![]() | |
12. |
魏沈芳,张顺棠,刘昆仑,段晓杰,高立栋. 超声辅助酶法制备鸡皮胶原蛋白的工艺优化. 河南工业大学学报(自然科学版). 2022(06): 59-66 .
![]() | |
13. |
袁子杰,秦洋,杨凤英,邓志萍. 超声辅助技术开发新型黑茶酒. 食品科技. 2021(11): 90-97 .
![]() |