GAI Sailun, CHEN Xiaojie, LING Tao, et al. Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth[J]. Science and Technology of Food Industry, 2022, 43(17): 167−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010015.
Citation: GAI Sailun, CHEN Xiaojie, LING Tao, et al. Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth[J]. Science and Technology of Food Industry, 2022, 43(17): 167−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010015.

Screening of Infant-derived Lactobacillus rhamnosus and Its Promotion of Intestinal Organoid Growth

More Information
  • Received Date: January 04, 2022
  • Available Online: June 28, 2022
  • In this study, five strains of Lactobacillus rhamnosus (L. rhamnosus) and two strains of Lactobacillus paracasei (L. paracasei) isolated from infants were used as experimental bacteria and Lactobacillus rhamnosus GG as control strain. The gastrointestinal tolerance of these strains were evaluated through acid resistance test, bile salt resistance test, hydrophobicity test, automatic aggregation ability test and cell adhesion test. L. rhamnosus SW-02, the best effective strain in tolerance evaluation, was co-cultured with intestinal organoids. The morphology and growth status of organoids were observed by inverted phase contrast microscope, and the budding rate was calculated. The proliferation status of organoids was evaluated by EdU staining. The mRNA levels of the proliferation marker Ki67, intestinal stem cell marker Lgr5 and tight junction protein Zo-1 were measured by real-time PCR. The level of MUC2 was detected by enzyme-linked immunosorbent assay. The results showed that compared with other strains, L. rhamnosus SW-02 had strong acid resistance. SW-02, SW-03 and SW-X had strong bile salt resistance. LGG, SW-01, SW-02, SW-04 and TX-02 had high hydrophobicity to xylene. For automatic aggregation capability, SW-01 was the strongest, followed by SW-02. The adhesion test of HT-29 cells showed that SW-01, SW-02 and SW-03 had high adhesion ability. When SW-02 was co-cultured with intestinal organoids, SW-02 significantly (P<0.05) increased the budding rate and number of organoids, and promoted the growth of organoids. Compared with the control group, the mRNA levels of Ki67, Lgr5 and Zo-1 in SW-02 group were significantly increased, and the secretion of MUC2 was significantly increased (P<0.05). In conclusion, L. rhamnosus SW-02 has good gastrointestinal tolerance and the ability to promote the growth of intestinal organs, and can be used as a potential strain for the development of probiotic products in the future.
  • [1]
    关嘉琦, 李柏良, 焦雯姝, 等. 益生菌对促进肠道发育作用的研究进展[J]. 食品科学,2020,41(21):278−285. [GUAN Jiaqi, LI Boliang, JIAO Wenshu, et al. Research progress of probiotics on promoting intestinal development[J]. Food Science,2020,41(21):278−285. doi: 10.7506/spkx1002-6630-20191015-132

    GUAN Jiaqi, LI Boliang, JIAO Wenshu, et al. Research progress of probiotics on promoting intestinal development[J]. Food Science, 2020, 41(21): 278−285. doi: 10.7506/spkx1002-6630-20191015-132
    [2]
    COLLADO M C, CERNADA M, BAÜERL C, et al. Microbial ecology and host-microbiota interactions during early life stages[J]. Gut Microbes,2012,3:352−365. doi: 10.4161/gmic.21215
    [3]
    HIEMSTRA I H, BOUMA G, GEERTS D, et al. Nod2 improves barrier function of intestinal epithelial cells via enhancement of TLR responses[J]. Molecular Immunology,2012,52(3-4):264−272. doi: 10.1016/j.molimm.2012.06.007
    [4]
    BANSAL T, ALANIZ R, JAYARAMAN A. Role for the bacterial signal indole in promoting epithelial cell barrier function[J]. Journal of Epithelial Biology and Pharmacology,2012,5(1):32−38. doi: 10.2174/1875044301205010032
    [5]
    YAN F, CAO H W, COVER T L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism[J]. Journal of Clinical Investigation,2011,121(6):2242−2253. doi: 10.1172/JCI44031
    [6]
    YAN F, POLK D B. Probiotics and probiotic-derived functional factors-mechanistic insights into applications for intestinal homeostasis[J]. Frontiers in Immunology,2020,11:1428.
    [7]
    HAN X, LEE A, HUANG S, et al. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids[J]. Gut Microbes,2019,10(1):59−76. doi: 10.1080/19490976.2018.1479625
    [8]
    ALLAIRE J M, CROWLEY S M, LAW H T, et al. The intestinal epithelium: Central coordinator of mucosal immunity[J]. Trends in Immunology, 2018: S1471490618300681.
    [9]
    YAN F, LIU L, CAO H, et al. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood[J]. Mucosal Immunology,2017,10(1):117−127. doi: 10.1038/mi.2016.43
    [10]
    LINDEMANS C A, CALAFIORE M, MERTELSMANN A M, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration[J]. Nature,2015,528(7583):560−564. doi: 10.1038/nature16460
    [11]
    WU H, XIE S, MIAO J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes,2020,11(4):997−1014. doi: 10.1080/19490976.2020.1734423
    [12]
    HOU Q, YE L, LIU H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J]. Cell Death & Differentiation,2018,25(9):1657−1670.
    [13]
    SITTIPO P, PHAM H Q, PARK C E, et al. Irradiation-induced intestinal damage is recovered by the indigenous gut bacteria Lactobacillus acidophilus[J]. Frontiers in Cellular and Infection Microbiology,2020,10:415. doi: 10.3389/fcimb.2020.00415
    [14]
    郝冉, 罗学刚, 贾玮, 等. 六株乳杆菌胃肠道定植能力分析[J]. 中国生化药物杂志, 2012, 33(5): 555-558

    HAO Ran, LUO Xuegang, JIA Wei, et al. Analysis of the colonization ability of six strains of Lactobacillus in the gastrointestinal tract[J]. Chinese Journal of Biochemical Pharmaceutics, 2012, 33(5): 555−558.
    [15]
    LIU M, ZHANG X, HAO Y, et al. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: In vivo and in vitro evidence[J]. Food & Function, 2019, 10: 1132−1145.
    [16]
    杜兰兰, 王洋, 刘蕾, 等. 类植物乳杆菌L-ZS9黏附特性研究及胃肠道环境对其黏附力的影响[J]. 食品科技,2015,40(12):2−6, 14. [DU Lanlan, WANG Yang, LIU Lei, et al. Study on the adhesion characteristics of Lactobacillus plantarum L-ZS9 and the influence of gastrointestinal environment on its adhesion[J]. Food Science and Technology,2015,40(12):2−6, 14.

    DU Lanlan, WANG Yang, LIU Lei, et al. Study on the adhesion characteristics of Lactobacillus plantarum L-ZS9 and the influence of gastrointestinal environment on its adhesion[J]. Food Science and Technology, 2015, 40(12): 2−6, 14.
    [17]
    LI Y, ZHANG T, GUO C, et al. Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1[J]. Pathogens and Disease,2020,78(2):ftaa016. doi: 10.1093/femspd/ftaa016
    [18]
    SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature,2009,459(7244):262−265. doi: 10.1038/nature07935
    [19]
    郭羽, 王晓. 黄芪多糖对鼠李糖乳杆菌促生长作用初探[J]. 山西中医学院学报,2018,19(4):10−14. [GUO Yu, WANG Xiao. A preliminary study on the growth-promoting effect of astragalus polysaccharides on Lactobacillus rhamnosus[J]. Journal of Shanxi College of Traditional Chinese Medicine,2018,19(4):10−14.

    GUO Yu, WANG Xiao. A preliminary study on the growth-promoting effect of astragalus polysaccharides on Lactobacillus rhamnosus[J]. Journal of Shanxi College of Traditional Chinese Medicine, 2018, 19(4): 10−14.
    [20]
    贺珊珊, 鲍志宁, 林伟锋, 等. 降胆固醇和耐酸耐胆盐益生菌的筛选研究[J]. 现代食品科技,2019,35(8):198−206. [HE Shanshan, BAO Zhining, LIN Weifeng, et al. Study on the screening of cholesterol and acid-resistant salt probiotics[J]. Modern Food Science and Technology,2019,35(8):198−206. doi: 10.13982/j.mfst.1673-9078.2019.8.029

    HE Shanshan, BAO Zhining, LIN Weifeng, et al. Study on the screening of cholesterol and acid-resistant salt probiotics[J]. Modern Food Science and Technology, 2019, 35 (8): 198-206. doi: 10.13982/j.mfst.1673-9078.2019.8.029
    [21]
    吕嘉枥, 闫亚梅, 王霄鹏, 等. 10株益生菌益生特性的比较研究[J]. 陕西科技大学学报(自然科学版),2016,34(1):118−122, 127. [LYU Jiali, YAN Yamei, WANG Xiaopeng, et al. Comparative study on the probiotic characteristics of 10 probiotics[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition),2016,34(1):118−122, 127.

    LYU Jiali, YAN Yamei, WANG Xiaopeng, et al. Comparative study on the probiotic characteristics of 10 probiotics[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2016, 34(1): 118−122, 127.
    [22]
    薛梅, 刘东方, 桑建, 等. 鼠李糖乳杆菌LV108传代的稳定性[J]. 中国乳品工业,2016,44(7):15−19. [XUE Mei, LIU Dongfang, SANG Jian, et al. Stability of rats Lactobacillus LV108[J]. China Dairy Industry,2016,44(7):15−19. doi: 10.3969/j.issn.1001-2230.2016.07.004

    XUE Mei, LIU Dongfang, SANG Jian, et al. Stability of Rats Lactobacillus LV108[J]. China Dairy Industry, 2016, 44 (7): 15-19. doi: 10.3969/j.issn.1001-2230.2016.07.004
    [23]
    龚虹, 王海霞, 马征途, 等. 乳酸菌粘附力与生物膜、疏水性和自凝集特性的研究[J]. 中国微生态学杂志,2016,28(9):1026−1028. [GONG Hong, WANG Haixia, MA Zhengtu, et al. Study on the adhesion and biofilm, hydrophobicity and self-aggregation characteristics of lactic acid bacteria[J]. Chinese Journal of Microecology,2016,28(9):1026−1028.

    GONG Hong, WANG Haixia, MA Zhengtu, et al. Study on the adhesion and biofilm, hydrophobicity and self-aggregation characteristics of lactic acid bacteria[J]. Chinese Journal of Microecology 2016, 28(9): 1026−1028.
    [24]
    李姗姗, 张俊娟, 杨雪娟, 等. 益生乳杆菌的筛选研究[J]. 中国乳品工业,2012,40(5):4−8. [LI Shanshan, ZHANG Junjuan, YANG Xuejuan, et al. Study on the screening of probiotics[J]. China Dairy Industry,2012,40(5):4−8. doi: 10.3969/j.issn.1001-2230.2012.05.001

    Li Shanshan, Zhang Junjuan, Yang Xuejuan, et al. Study on the screening of probiotics[J]. China Dairy Industry, 2012, 40 (5): 4-8. doi: 10.3969/j.issn.1001-2230.2012.05.001
    [25]
    唐雅茹, 于上富, 国立东, 等. 一株降胆固醇乳杆菌的筛选及其益生作用的研究[J]. 食品工业科技,2016,37(1):142−144. [TANG Yaru, YU Shangfu, GUO Lidong, et al. Screening of a cholesterol lowering Lactobacillus and its prebiotic effect[J]. Food Industry Science and Technology,2016,37(1):142−144.

    TANG Yaru, YU Shangfu, GUO Lidong, et al Screening of a cholesterol lowering Lactobacillus and its prebiotic effect[J]. Food Industry Science and Technology, 2016, 37 (1): 142-144.
    [26]
    杨桃, 孙宇, 陈佳佳, 等. 类器官的研究进展[J]. 中国细胞生物学学报,2019,41(3):494−500. [YANG Tao, SUN Yu, CHEN Jiajia, et al. Research progress in organoids[J]. Chinese Journal of Cell Biology,2019,41(3):494−500.

    YANG Tao, SUN Yu, CHEN Jiajia, et al. Research progress in organoids[J]. Chinese Journal of Cell Biology, 2019, 41(3): 494−500.
    [27]
    LUKOVAC S, BELZER C, PELLIS L, et al. Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids[J]. MBio,2014,5(4):e01438−14.
    [28]
    沈颖, 郭红梅, 金玉. 肠道干细胞G蛋白耦联受体5的作用机制与影响因素[J]. 医学研究生学报,2018,31(9):101−104. [SHEN Ying, GUO Hongmei, JIN Yu. Mechanism and influencing factors of G protein-coupled receptor 5 in intestinal stem cells[J]. Journal of Medical Postgraduates,2018,31(9):101−104. doi: 10.16571/j.cnki.1008-8199.2018.09.019

    SHEN Ying, GUO Hongmei, JIN Yu. Mechanism and influencing factors of G protein-coupled receptor 5 in intestinal stem cells[J]. Journal of Medical Postgraduates, 2018, 31(9): 101−104. doi: 10.16571/j.cnki.1008-8199.2018.09.019
    [29]
    刘伟, 余英豪, 欧阳学农, 等. P53和Ki67在胃癌中的表达及其临床意义[J]. 世界华人消化杂志,2011,19(4):367−373. [LIU Wei, YU Yinghao, OUYANG Xuenong, et al. Expression of P53 and Ki67 in gastric cancer and its clinical significance[J]. World Chinese Journal of Digestion,2011,19(4):367−373.

    LIU Wei, YU Yinghao, OUYANG Xuenong, et al. Expression of P53 and Ki67 in gastric cancer and its clinical significance[J]. World Chinese Journal of Digestion, 2011, 19(4): 367−373.
    [30]
    KUO W T, ZUO L, ODENWALD M A, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair[J]. Gastroenterology,2021,161(6):1924−1939. doi: 10.1053/j.gastro.2021.08.047
    [31]
    LEE Y S, KIM T Y, KIM Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development[J]. Cell Host & Microbe,2018,24(6):833−846.
    [32]
    SHEN X, LIU L, PEEK R M, et al. Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes[J]. Mucosal Immunology,2018,11(5):1316−1328. doi: 10.1038/s41385-018-0034-3
  • Cited by

    Periodical cited type(10)

    1. 张珉畅,张艳新,郝佳楠,秦建春,林敏娟. 毛酸浆储藏病原菌分离鉴定和采后保鲜研究. 现代园艺. 2025(11): 1-5+11 .
    2. 杨小叶,王利强. 可食用材料制备液芯酸奶球及其性能研究. 包装与食品机械. 2024(05): 40-48 .
    3. 杨旭. 新型生物保鲜剂在食品微生物防控中的应用. 中外食品工业. 2024(18): 34-36 .
    4. 卢波斯,崔丹丹,沈宏. 海洋菌株Mitsuaria sp. SH-50产嗜热性壳聚糖酶CsnSH50的酶学性质表征及其应用. 现代食品科技. 2023(01): 50-58 .
    5. 吴可,李萌,李莹,马永生,范馨茹,赵前程. 海参贮藏保鲜机理及保鲜技术研究进展. 肉类研究. 2023(02): 46-53 .
    6. 杨絮,鲁淑彦,郭全友. 乳酸链球菌素对高水分烤虾贮藏中品质的影响. 食品工业科技. 2023(10): 330-335 . 本站查看
    7. 张玉婷,赵思佳,景正义,李腾飞. 壳聚糖-花椒精油保鲜膜对圣女果常温贮藏效果影响. 现代食品. 2023(07): 219-222 .
    8. 李仲堃,李姿萱,刘辰昊,刘春娥. 壳聚糖对无水保活单环刺螠品质的影响. 食品与机械. 2022(05): 127-132 .
    9. 裴诺,杜宇凡,孙洁,汪之和. 超声改性对壳聚糖/淀粉复合膜特性的影响. 食品与发酵工业. 2022(18): 88-94 .
    10. 王晓,李亚娜,范兰兰,李增辉,吴凯旋. 壳聚糖/番茄花青素/ε-聚赖氨酸复合膜的制备与表征. 武汉轻工大学学报. 2022(06): 15-20 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return