Citation: | YAN Lingzhi. Research Progress of Signal Amplification Strategies in Immunochromatographic Test Strip[J]. Science and Technology of Food Industry, 2022, 43(11): 34−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120234. |
[1] |
ZHANG Mengyue, YAN Lingzhi, HUANG Qiong, et al. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay[J]. Food Control,2018,84:215−220.
|
[2] |
ZHANG Daohong, LI Peiwu, YANG Yang, et al. A high selective immunochromatographic assay for rapid detection of aflatoxin B1[J]. Talanta,2011,85(1):736−742. doi: 10.1016/j.talanta.2011.04.061
|
[3] |
ZHANG Daohong, LI Peiwu, ZHANG Qi, et al. A naked-eye based strategy for semiquantitative immunochromatographic assay[J]. Analytica Chimica Acta,2012,740:74−79. doi: 10.1016/j.aca.2012.06.015
|
[4] |
ZHANG Daohong, LI Peiwu, ZHANG Qi, et al. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts[J]. Biosensors and Bioelectronics,2011,26(6):2877−2882. doi: 10.1016/j.bios.2010.11.031
|
[5] |
ZHAN Li, GUO Shuangzhuang, SONG Fayi, et al. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays[J]. Nano Letters,2017,17(12):7207−7212. doi: 10.1021/acs.nanolett.7b02302
|
[6] |
LI Juan, DUAN Hong, XU Peng, et al. Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay[J]. RSC Advances,2016,6(31):26178−26185. doi: 10.1039/C6RA03695C
|
[7] |
LIU Linyang, YANG Danting, LIU Guozhen. Signal amplification strategies for paper-based analytical devices[J]. Biosensors & Bioelectronics,2019,136:60−75.
|
[8] |
JI Yanwei, REN Meiling, LI Yanping, et al. Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers[J]. Talanta,2015,142:206−212. doi: 10.1016/j.talanta.2015.04.048
|
[9] |
ZHAO Bingxin, HUANG Qiong, DOU Leina, et al. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,275:223−229. doi: 10.1016/j.snb.2018.08.029
|
[10] |
YAO Li, TENG Jun, ZHU Mengya, et al. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions[J]. Biosensors & Bioelectronics,2016,85:331−336.
|
[11] |
BU Tong, JIA Pei, SUN Xinyu, et al. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples[J]. Sensors and Actuators B: Chemical,2020,320:128440. doi: 10.1016/j.snb.2020.128440
|
[12] |
SU Lihong, WANG Lulu, YAO Xiaolin, et al. Small size nanoparticles-Co3O4 based lateral flow immunoassay biosensor for highly sensitive and rapid detection of furazolidone[J]. Talanta,2020,211:120729. doi: 10.1016/j.talanta.2020.120729
|
[13] |
SHI Lei, WU Feng, WEN Yiming, et al. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay[J]. Analytical and Bioanalytical Chemistry,2015,407(2):529−535. doi: 10.1007/s00216-014-8276-8
|
[14] |
WANG Peilong, WANG Ruiguo, ZHANG Wei, et al. Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol[J]. Biosensors & Bioelectronics,2016,77:866−870.
|
[15] |
CHEN Yiqiang, CHEN Qian, HAN Miaomiao, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk[J]. Biosensors & Bioelectronics,2016,79:430−434.
|
[16] |
WANG Jingyun, ZHANG Lei, HUANG Youju, et al. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol[J]. Scientific Reports,2017(7):41419.
|
[17] |
XU Hui, CHEN Jiao, BIRRENKOTT J, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins[J]. Analytical Chemistry,2014,86(15):7351−7359. doi: 10.1021/ac502249f
|
[18] |
PENG Xiayu, KANG Lichao, PANG Fangqin, et al. A signal-enhanced lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol A[J]. Food and Agricultural Immunology,2017,29(1):216−227.
|
[19] |
HUANG Qiong, BU Tong, ZHANG Wentao, et al. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier[J]. Food Chemistry,2018,262:48−55. doi: 10.1016/j.foodchem.2018.04.085
|
[20] |
BU Tong, ZHANG Meng, SUN Xinyu, et al. Gold nanoparticles-functionalized microorganisms assisted construction of immunobiosensor for sensitive detection of ochratoxin A in food samples[J]. Sensors and Actuators B: Chemical,2019,299:126969. doi: 10.1016/j.snb.2019.126969
|
[21] |
ZHANG Bo, YANG Xingsheng, LIU Xiaoxian, et al. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay[J]. RSC Advances,2020,10(5):2483−2489. doi: 10.1039/C9RA09252H
|
[22] |
XU Shaolan, ZHAGN Ganggang, FANG Bolong, et al. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize[J]. ACS Applied Materials & Interfaces,2019,11(34):31283−31290.
|
[23] |
YAO Xiaolin, WANG Zonghan, ZHAO Man, et al. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17 beta-estradiol[J]. Food Chemistry,2021,347:129001. doi: 10.1016/j.foodchem.2021.129001
|
[24] |
HUANG Zhen, XIONG Zhijuan, CHEN Yuan, et al. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine[J]. Journal of Agricultural and Food Chemistry,2019,67(10):3028−3036. doi: 10.1021/acs.jafc.8b06449
|
[25] |
YIN Xuechi, DOU Leina, YAO Xiaolin, et al. Controllable assembly metal-organic frameworks and gold nanoparticles composites for sensitive immunochromatographic assay[J]. Food Chemistry,2022,367:130737. doi: 10.1016/j.foodchem.2021.130737
|
[26] |
ZHENG Shuai, YANG Xingsheng, ZHANG Bo, et al. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot[J]. Food Chemistry,2021,363:130400. doi: 10.1016/j.foodchem.2021.130400
|
[27] |
ZHANG Yunyue, REN Fazheng, WANG Guoxin, et al. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation[J]. Sensors and Actuators B: Chemical,2021,329:129273. doi: 10.1016/j.snb.2020.129273
|
[28] |
HAO Liangwen, CHEN Jing, CHEN Xirui, et al. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J]. Food Chemistry,2021,336:127710.
|
[29] |
GUO Liang, SHAO Yanna, DUAN Hong, et al. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce[J]. Analytical Chemistry,2019,91(7):4727−4734. doi: 10.1021/acs.analchem.9b00223
|
[30] |
HUANG Zhen, PENG Juan, HAN Jiaojiao, et al. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7[J]. Food Chemistry,2019,276:333−341. doi: 10.1016/j.foodchem.2018.09.164
|
[31] |
BU Tong, BAI Feier, ZHAO Shuang, et al. Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining[J]. Biosensors & Bioelectronics,2021,192:113538.
|
[32] |
SHUKLA S, LEEM H, KIM M, et al. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella[J]. Anal Bioanal Chem,2011,401(8):2581−2590. doi: 10.1007/s00216-011-5327-2
|
[33] |
ZHANG Meng, BU Tong, BAI Feier, et al. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor[J]. Food Chemistry,2021,341:128231. doi: 10.1016/j.foodchem.2020.128231
|
[34] |
LIU Xiao, YANG Jifei, LI Qingmei, et al. A strip test for the optical determination of influenza virus H3 subtype using gold nanoparticle coated polystyrene latex microspheres[J]. Microchim Acta,2020,187(5):306. doi: 10.1007/s00604-020-04255-1
|
[35] |
CHEN Minghui, YU Zhibiao, LIU Daofeng, et al. Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7[J]. Analytica Chimica Acta,2015,876:71−76. doi: 10.1016/j.aca.2015.03.023
|
[36] |
YAN Lingzhi, DOU Leina, BU Tong, et al. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe[J]. Food Chemistry,2018,261:131−138. doi: 10.1016/j.foodchem.2018.04.016
|
[37] |
FANG Qingkui, WANG Limin, CHENG Qi, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples[J]. Analytica Chimica Acta,2015,881:82−89. doi: 10.1016/j.aca.2015.04.047
|
[38] |
ZHONG Youhao, CHEN Yinji, YAO Li, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening[J]. Microchimica Acta,2016,183(6):1989−1994. doi: 10.1007/s00604-016-1812-9
|
[39] |
BU Tong, HUANG Qiong, YAN Lingzhi, et al. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth[J]. Food Control,2018,84:536−543. doi: 10.1016/j.foodcont.2017.08.036
|
[40] |
PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers[J]. Talanta,2016,152:521−530. doi: 10.1016/j.talanta.2016.02.050
|
[41] |
YU Qing, LI Heng, LI Chenglong, et al. Gold nanoparticles-based lateral flow immunoassay with silver staining for simultaneous detection of fumonisin B1 and deoxynivalenol[J]. Food Control,2015,54:347−352. doi: 10.1016/j.foodcont.2015.02.019
|
[42] |
ANFOSSI L, DI NARDO F, GIOVANNOLI C, et al. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement[J]. Anal Bioanal Chem,2013,405(30):9859−9867. doi: 10.1007/s00216-013-7428-6
|
[43] |
KIM W, LEE S, JEON S. Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions[J]. Sensors and Actuators B: Chemical,2018,273:1323−1327. doi: 10.1016/j.snb.2018.07.045
|
[44] |
TIAN Meiling, LEI Lingli, XIE Wenyue, et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay[J]. Sensors and Actuators B: Chemical,2019,282:96−103. doi: 10.1016/j.snb.2018.11.028
|
[45] |
ZHOU Yaofeng, CHEN Yuan, LIU Yang, et al. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics[J]. Biosensors & Bioelectronics,2021,171:112753.
|
[46] |
HUANG Di, LIN Bingqian, SONG Yanling, et al. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout[J]. Acs Applied Materials & Interfaces,2019,11(2):1800−1806.
|
[47] |
LI Y S, ZHOU Y, MENG X Y, et al. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of kappa-casein in bovine milk samples[J]. Biosensors & Bioelectronics,2014,61:241−244.
|
[48] |
HENDRICKSON, ZVEREVA E A, ZHERDEV A V, et al. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification[J]. Food Control,2022,133:108655. doi: 10.1016/j.foodcont.2021.108655
|
[49] |
GAO Xuefei, XU Liping, WU Tingting, et al. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224[J]. Talanta,2016,146:648−654. doi: 10.1016/j.talanta.2015.06.060
|
[50] |
GAO Lizeng, ZHUANG Jie, NIE Leng, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007,2(9):577−583. doi: 10.1038/nnano.2007.260
|
[51] |
PAROLO C, DE LA ESCOSURA-MUNIZ A, MERKOCI A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes[J]. Biosensors and Bioelectronics,2013,40(1):412−416. doi: 10.1016/j.bios.2012.06.049
|
[52] |
PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Enhancement of lateral flow immunoassay by alkaline phosphatase: A simple and highly sensitive test for potato virus X[J]. Microchimica Acta,2017,185(1):25.
|
[53] |
YE Haihang, XIA Xiaohu. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques[J]. Journal of Materials Chemistry B,2018,6(44):7102−7111. doi: 10.1039/C8TB01603H
|
[54] |
JIANG Dawei, NI Dalong, ROSENKRANS Z T, et al. Nanozyme: New horizons for responsive biomedical applications[J]. Chem Soc Rev,2019,48(14):3683−3704. doi: 10.1039/C8CS00718G
|
[55] |
LOYNACHAN C N, THOMAS M R, GRAY E R, et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range[J]. ACS Nano,2018,12(1):279−288. doi: 10.1021/acsnano.7b06229
|
[56] |
GAO Zhuangqiang, YE Haihang, TANG Dianyong, et al. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics[J]. Nano Letters,2017,17(9):5572−5579. doi: 10.1021/acs.nanolett.7b02385
|
[57] |
ZHAGN Jing, TANG Lemin, YU Qingcai, et al. Gold-platinum nanoflowers as colored and catalytic labels for ultrasensitive lateral flow MicroRNA-21 assay[J]. Sensors and Actuators B: Chemical,2021,344:130325. doi: 10.1016/j.snb.2021.130325
|
[58] |
JIANG Tao, SONG Yang, DU Dan, et al. Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis[J]. ACS Sensors,2016,1(6):717−724. doi: 10.1021/acssensors.6b00019
|
[59] |
CHENG Nan, SHI Qiurong, ZHU Chengzhou, et al. Pt-Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides[J]. Biosensors & Bioelectronics,2019,142:111498.
|
[60] |
LIN Shan, ZHENG Danmin, LI Ailing, et al. Black oxidized 3, 3', 5, 5'-tetramethylbenzidine nanowires (oxTMB NWs) for enhancing Pt nanoparticle-based strip immunosensing[J]. Analytical and Bioanalytical Chemistry,2019,411(18):4063−4071. doi: 10.1007/s00216-019-01745-x
|
[61] |
LIU Sijie, DOU Leina, YAO Xiaolin, et al. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J]. Biosensors & Bioelectronics,2020,169:112610.
|
[62] |
TIAN Meiling, XIE Wenyue, ZHANG Ting, et al. A sensitive lateral flow immunochromatographic strip with prussian blue nanoparticles mediated signal generation and cascade amplification[J]. Sensors and Actuators B: Chemical,2020,309:127728. doi: 10.1016/j.snb.2020.127728
|
[63] |
DUAN Demin, FAN Kelong, ZHANG Dexi, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosensors & Bioelectronics,2015,74:134−141.
|
[64] |
WEN Congying, HU Jun, ZHAGN Zhiling, et al. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres[J]. Analytical Chemistry,2013,85(2):1223−1230. doi: 10.1021/ac303204q
|
[65] |
HUAGN Yan, WEN Yongqiang, BARYEH K, et al. Magnetized carbon nanotubes for visual detection of proteins directly in whole blood[J]. Anal Chim Acta,2017,993:79−86. doi: 10.1016/j.aca.2017.09.025
|
[66] |
WU Min, ZHANG Zhiling, CHEN Gang, et al. Rapid and quantitative detection of avian influenza A (H7N9) virions in complex matrices based on combined magnetic capture and quantum dot labeling[J]. Small,2015,11(39):5280−5288. doi: 10.1002/smll.201403746
|
[67] |
SHARMAA A, TOK A I Y, LEE C, et al. Magnetic field assisted preconcentration of biomolecules for lateral flow assaying[J]. Sensors and Actuators B: Chemical,2019,285:431−437. doi: 10.1016/j.snb.2019.01.073
|
[68] |
TSAI T T, HUANG T H, CHEN C A, et al. Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay[J]. Scientific Reports,2018,8(1):17319. doi: 10.1038/s41598-018-35694-9
|
[69] |
ZHANG Sufeng, LIU Lina, TANG Ruihua, et al. Sensitivity enhancement of lateral flow assay by embedding cotton threads in paper[J]. Cellulose,2019,26(13-14):8087−8099. doi: 10.1007/s10570-019-02677-6
|
[70] |
TANG Ye, GAO Hui, KURTH F, et al. Nanocellulose aerogel inserts for quantitative lateral flow immunoassays[J]. Biosensors and Bioelectronics,2012,192:113491.
|
[71] |
CHOI J R, LIU Zhi, HU Jie, et al. Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing[J]. Analytical Chemistry,2016,88(12):6254−6264. doi: 10.1021/acs.analchem.6b00195
|
[72] |
DANIELQ G, CHRISTINA S, ISRAEL G, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers[J]. Biosensors & Bioelectronics,2019,141:111407.
|
[73] |
AMADEO S T, NGO D B, PAROLO C, et al. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy[J]. Biosensors and Bioelectronics,2020,168:112559. doi: 10.1016/j.bios.2020.112559
|
[74] |
KATIS I N, HE P J W, EASON R W, et al. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path[J]. Biosensors and Bioelectronics,2018,113:95−100. doi: 10.1016/j.bios.2018.05.001
|
[75] |
WU Zhengzong, HE Deyun, XU Enbo, et al. Rapid detection of beta-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification[J]. Food Chemistry,2018,269:375−379. doi: 10.1016/j.foodchem.2018.07.011
|
[76] |
CHOI J R, YONG K W, TANG Ruihua, et al. Lateral flow assay based on paper-hydrogel hybrid material for sensitive point-of-care detection of dengue virus[J]. Advanced Healthcare Materials,2017,6(1):1600920. doi: 10.1002/adhm.201600920
|
[77] |
RIVAS L, MEDINA-SANCHEZ M, DE LA ESCOSURA-MUÑIZ A, et al. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics[J]. Lab on a Chip,2014,14(22):4406−4414. doi: 10.1039/C4LC00972J
|
[78] |
TANG Ruihua, LIU Lina, ZHANG Sufeng, et al. Modification of a nitrocellulose membrane with cellulose nanofibers for enhanced sensitivity of lateral flow assays: Application to the determination of Staphylococcus aureus[J]. Microchimica Acta,2019,186(12):831. doi: 10.1007/s00604-019-3970-z
|
[79] |
WANG Yiru, QIN Zhengpeng, BOULWARE D R, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry,2016,88(23):11774−11782. doi: 10.1021/acs.analchem.6b03406
|
[80] |
HU Xiaoyan, WAN Jiangshan, PENG Xiaole, et al. Calorimetric lateral flow immunoassay detection platform based on the photothermal effect of gold nanocages with high sensitivity, specificity, and accuracy[J]. International Journal of Nanomedicine,2019,14:7695−7705. doi: 10.2147/IJN.S218834
|
[81] |
QU Zhuo, WANG Kan, ALFRANCA G, et al. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification[J]. Nanoscale Research Letters,2020,15(1):10. doi: 10.1186/s11671-019-3240-3
|
[82] |
SU Lihong, CHEN Yaqian, WANG Lulu, et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J]. Sensors and Actuators B: Chemical,2021,331:129431. doi: 10.1016/j.snb.2020.129431
|
[83] |
WANG Rui, KIM K, CHOI N, et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips[J]. Sensors and Actuators B: Chemical,2018,270:72−79.
|
[84] |
LI Yu, TANG Shusheng, ZHANG Wanjun, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B: Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
|
[85] |
SHENG E, LU Yuxiao, XIAO Yue, et al. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip[J]. Biosensors and Bioelectronics,2021,181:113149. doi: 10.1016/j.bios.2021.113149
|
[86] |
ZHANG Dan, DU Shuyuan, SU Shupeng, et al. Rapid detection method and portable device based on the photothermal effect of gold nanoparticles[J]. Biosensors and Bioelectronics,2019,123:19−24. doi: 10.1016/j.bios.2018.09.039
|
[87] |
WANG Chongwen, WANG Chaoguang, WANG Xiaolong, et al. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces,2019,11(21):19495−19505.
|
[88] |
YADAV S, SADIQUE M A, RANJAN P, et al. SERS based lateral flow immunoassay for point-of-Care detection of SARS-CoV-2 in clinical samples[J]. ACS Applied Bio Materials,2021,4(4):2974−2995. doi: 10.1021/acsabm.1c00102
|
[89] |
XIAO Rui, LU Luchun, RONG Zhen, et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing[J]. Biosensors and Bioelectronics,2020,168:112524. doi: 10.1016/j.bios.2020.112524
|
[90] |
LIN L K, STANCIU L A. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J]. Sensors and Actuators B: Chemical,2018,276:222−229. doi: 10.1016/j.snb.2018.08.068
|
[91] |
SU Lihong, HU Huilan, TIAN Yanli, et al. Highly sensitive colorimetric/surface-enhanced raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J]. Analytical Chemistry,2021,93(23):8362−8369. doi: 10.1021/acs.analchem.1c01487
|