YAN Lingzhi. Research Progress of Signal Amplification Strategies in Immunochromatographic Test Strip[J]. Science and Technology of Food Industry, 2022, 43(11): 34−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120234.
Citation: YAN Lingzhi. Research Progress of Signal Amplification Strategies in Immunochromatographic Test Strip[J]. Science and Technology of Food Industry, 2022, 43(11): 34−44. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120234.

Research Progress of Signal Amplification Strategies in Immunochromatographic Test Strip

More Information
  • Received Date: December 22, 2021
  • Available Online: April 06, 2022
  • Immunochromatographic Test Strip (ICTS), a detection technology based on capillary column chromatography and specific immune interaction between antibody and antigen, is widely utilized in the field of rapid detection of food safety detection due to its cost-effectiveness, easy operation, non-professional personnel, short assay time, high specificity and naked eye visualization. Conventional spherical gold nanoparticles-based ICTS is the most common detection method. However, the conventional ICTS can help achieve simple qualitative or semiquantitative analysis, its low sensitivity is an obstacle to meet the current detection requirements. Therefore, there has been a growing interest focusing on the signal amplification method to improve the sensitivity of ICTS devices. This paper summarizes signal amplification strategies to enhance the sensitivity of ICTS and proposes the future perspectives, which provides technical references for the development of rapid detection methods for food safety.
  • [1]
    ZHANG Mengyue, YAN Lingzhi, HUANG Qiong, et al. Highly sensitive simultaneous detection of major ochratoxins by an immunochromatographic assay[J]. Food Control,2018,84:215−220.
    [2]
    ZHANG Daohong, LI Peiwu, YANG Yang, et al. A high selective immunochromatographic assay for rapid detection of aflatoxin B1[J]. Talanta,2011,85(1):736−742. doi: 10.1016/j.talanta.2011.04.061
    [3]
    ZHANG Daohong, LI Peiwu, ZHANG Qi, et al. A naked-eye based strategy for semiquantitative immunochromatographic assay[J]. Analytica Chimica Acta,2012,740:74−79. doi: 10.1016/j.aca.2012.06.015
    [4]
    ZHANG Daohong, LI Peiwu, ZHANG Qi, et al. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts[J]. Biosensors and Bioelectronics,2011,26(6):2877−2882. doi: 10.1016/j.bios.2010.11.031
    [5]
    ZHAN Li, GUO Shuangzhuang, SONG Fayi, et al. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays[J]. Nano Letters,2017,17(12):7207−7212. doi: 10.1021/acs.nanolett.7b02302
    [6]
    LI Juan, DUAN Hong, XU Peng, et al. Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay[J]. RSC Advances,2016,6(31):26178−26185. doi: 10.1039/C6RA03695C
    [7]
    LIU Linyang, YANG Danting, LIU Guozhen. Signal amplification strategies for paper-based analytical devices[J]. Biosensors & Bioelectronics,2019,136:60−75.
    [8]
    JI Yanwei, REN Meiling, LI Yanping, et al. Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers[J]. Talanta,2015,142:206−212. doi: 10.1016/j.talanta.2015.04.048
    [9]
    ZHAO Bingxin, HUANG Qiong, DOU Leina, et al. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol[J]. Sensors and Actuators B: Chemical,2018,275:223−229. doi: 10.1016/j.snb.2018.08.029
    [10]
    YAO Li, TENG Jun, ZHU Mengya, et al. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions[J]. Biosensors & Bioelectronics,2016,85:331−336.
    [11]
    BU Tong, JIA Pei, SUN Xinyu, et al. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples[J]. Sensors and Actuators B: Chemical,2020,320:128440. doi: 10.1016/j.snb.2020.128440
    [12]
    SU Lihong, WANG Lulu, YAO Xiaolin, et al. Small size nanoparticles-Co3O4 based lateral flow immunoassay biosensor for highly sensitive and rapid detection of furazolidone[J]. Talanta,2020,211:120729. doi: 10.1016/j.talanta.2020.120729
    [13]
    SHI Lei, WU Feng, WEN Yiming, et al. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay[J]. Analytical and Bioanalytical Chemistry,2015,407(2):529−535. doi: 10.1007/s00216-014-8276-8
    [14]
    WANG Peilong, WANG Ruiguo, ZHANG Wei, et al. Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol[J]. Biosensors & Bioelectronics,2016,77:866−870.
    [15]
    CHEN Yiqiang, CHEN Qian, HAN Miaomiao, et al. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk[J]. Biosensors & Bioelectronics,2016,79:430−434.
    [16]
    WANG Jingyun, ZHANG Lei, HUANG Youju, et al. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol[J]. Scientific Reports,2017(7):41419.
    [17]
    XU Hui, CHEN Jiao, BIRRENKOTT J, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins[J]. Analytical Chemistry,2014,86(15):7351−7359. doi: 10.1021/ac502249f
    [18]
    PENG Xiayu, KANG Lichao, PANG Fangqin, et al. A signal-enhanced lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol A[J]. Food and Agricultural Immunology,2017,29(1):216−227.
    [19]
    HUANG Qiong, BU Tong, ZHANG Wentao, et al. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier[J]. Food Chemistry,2018,262:48−55. doi: 10.1016/j.foodchem.2018.04.085
    [20]
    BU Tong, ZHANG Meng, SUN Xinyu, et al. Gold nanoparticles-functionalized microorganisms assisted construction of immunobiosensor for sensitive detection of ochratoxin A in food samples[J]. Sensors and Actuators B: Chemical,2019,299:126969. doi: 10.1016/j.snb.2019.126969
    [21]
    ZHANG Bo, YANG Xingsheng, LIU Xiaoxian, et al. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay[J]. RSC Advances,2020,10(5):2483−2489. doi: 10.1039/C9RA09252H
    [22]
    XU Shaolan, ZHAGN Ganggang, FANG Bolong, et al. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize[J]. ACS Applied Materials & Interfaces,2019,11(34):31283−31290.
    [23]
    YAO Xiaolin, WANG Zonghan, ZHAO Man, et al. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17 beta-estradiol[J]. Food Chemistry,2021,347:129001. doi: 10.1016/j.foodchem.2021.129001
    [24]
    HUANG Zhen, XIONG Zhijuan, CHEN Yuan, et al. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine[J]. Journal of Agricultural and Food Chemistry,2019,67(10):3028−3036. doi: 10.1021/acs.jafc.8b06449
    [25]
    YIN Xuechi, DOU Leina, YAO Xiaolin, et al. Controllable assembly metal-organic frameworks and gold nanoparticles composites for sensitive immunochromatographic assay[J]. Food Chemistry,2022,367:130737. doi: 10.1016/j.foodchem.2021.130737
    [26]
    ZHENG Shuai, YANG Xingsheng, ZHANG Bo, et al. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot[J]. Food Chemistry,2021,363:130400. doi: 10.1016/j.foodchem.2021.130400
    [27]
    ZHANG Yunyue, REN Fazheng, WANG Guoxin, et al. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation[J]. Sensors and Actuators B: Chemical,2021,329:129273. doi: 10.1016/j.snb.2020.129273
    [28]
    HAO Liangwen, CHEN Jing, CHEN Xirui, et al. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice[J]. Food Chemistry,2021,336:127710.
    [29]
    GUO Liang, SHAO Yanna, DUAN Hong, et al. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce[J]. Analytical Chemistry,2019,91(7):4727−4734. doi: 10.1021/acs.analchem.9b00223
    [30]
    HUANG Zhen, PENG Juan, HAN Jiaojiao, et al. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7[J]. Food Chemistry,2019,276:333−341. doi: 10.1016/j.foodchem.2018.09.164
    [31]
    BU Tong, BAI Feier, ZHAO Shuang, et al. Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining[J]. Biosensors & Bioelectronics,2021,192:113538.
    [32]
    SHUKLA S, LEEM H, KIM M, et al. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella[J]. Anal Bioanal Chem,2011,401(8):2581−2590. doi: 10.1007/s00216-011-5327-2
    [33]
    ZHANG Meng, BU Tong, BAI Feier, et al. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor[J]. Food Chemistry,2021,341:128231. doi: 10.1016/j.foodchem.2020.128231
    [34]
    LIU Xiao, YANG Jifei, LI Qingmei, et al. A strip test for the optical determination of influenza virus H3 subtype using gold nanoparticle coated polystyrene latex microspheres[J]. Microchim Acta,2020,187(5):306. doi: 10.1007/s00604-020-04255-1
    [35]
    CHEN Minghui, YU Zhibiao, LIU Daofeng, et al. Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7[J]. Analytica Chimica Acta,2015,876:71−76. doi: 10.1016/j.aca.2015.03.023
    [36]
    YAN Lingzhi, DOU Leina, BU Tong, et al. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe[J]. Food Chemistry,2018,261:131−138. doi: 10.1016/j.foodchem.2018.04.016
    [37]
    FANG Qingkui, WANG Limin, CHENG Qi, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples[J]. Analytica Chimica Acta,2015,881:82−89. doi: 10.1016/j.aca.2015.04.047
    [38]
    ZHONG Youhao, CHEN Yinji, YAO Li, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening[J]. Microchimica Acta,2016,183(6):1989−1994. doi: 10.1007/s00604-016-1812-9
    [39]
    BU Tong, HUANG Qiong, YAN Lingzhi, et al. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth[J]. Food Control,2018,84:536−543. doi: 10.1016/j.foodcont.2017.08.036
    [40]
    PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers[J]. Talanta,2016,152:521−530. doi: 10.1016/j.talanta.2016.02.050
    [41]
    YU Qing, LI Heng, LI Chenglong, et al. Gold nanoparticles-based lateral flow immunoassay with silver staining for simultaneous detection of fumonisin B1 and deoxynivalenol[J]. Food Control,2015,54:347−352. doi: 10.1016/j.foodcont.2015.02.019
    [42]
    ANFOSSI L, DI NARDO F, GIOVANNOLI C, et al. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement[J]. Anal Bioanal Chem,2013,405(30):9859−9867. doi: 10.1007/s00216-013-7428-6
    [43]
    KIM W, LEE S, JEON S. Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions[J]. Sensors and Actuators B: Chemical,2018,273:1323−1327. doi: 10.1016/j.snb.2018.07.045
    [44]
    TIAN Meiling, LEI Lingli, XIE Wenyue, et al. Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay[J]. Sensors and Actuators B: Chemical,2019,282:96−103. doi: 10.1016/j.snb.2018.11.028
    [45]
    ZHOU Yaofeng, CHEN Yuan, LIU Yang, et al. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics[J]. Biosensors & Bioelectronics,2021,171:112753.
    [46]
    HUANG Di, LIN Bingqian, SONG Yanling, et al. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout[J]. Acs Applied Materials & Interfaces,2019,11(2):1800−1806.
    [47]
    LI Y S, ZHOU Y, MENG X Y, et al. Enzyme-antibody dual labeled gold nanoparticles probe for ultrasensitive detection of kappa-casein in bovine milk samples[J]. Biosensors & Bioelectronics,2014,61:241−244.
    [48]
    HENDRICKSON, ZVEREVA E A, ZHERDEV A V, et al. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification[J]. Food Control,2022,133:108655. doi: 10.1016/j.foodcont.2021.108655
    [49]
    GAO Xuefei, XU Liping, WU Tingting, et al. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224[J]. Talanta,2016,146:648−654. doi: 10.1016/j.talanta.2015.06.060
    [50]
    GAO Lizeng, ZHUANG Jie, NIE Leng, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007,2(9):577−583. doi: 10.1038/nnano.2007.260
    [51]
    PAROLO C, DE LA ESCOSURA-MUNIZ A, MERKOCI A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes[J]. Biosensors and Bioelectronics,2013,40(1):412−416. doi: 10.1016/j.bios.2012.06.049
    [52]
    PANFEROV V G, SAFENKOVA I V, VARITSEV Y A, et al. Enhancement of lateral flow immunoassay by alkaline phosphatase: A simple and highly sensitive test for potato virus X[J]. Microchimica Acta,2017,185(1):25.
    [53]
    YE Haihang, XIA Xiaohu. Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques[J]. Journal of Materials Chemistry B,2018,6(44):7102−7111. doi: 10.1039/C8TB01603H
    [54]
    JIANG Dawei, NI Dalong, ROSENKRANS Z T, et al. Nanozyme: New horizons for responsive biomedical applications[J]. Chem Soc Rev,2019,48(14):3683−3704. doi: 10.1039/C8CS00718G
    [55]
    LOYNACHAN C N, THOMAS M R, GRAY E R, et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range[J]. ACS Nano,2018,12(1):279−288. doi: 10.1021/acsnano.7b06229
    [56]
    GAO Zhuangqiang, YE Haihang, TANG Dianyong, et al. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics[J]. Nano Letters,2017,17(9):5572−5579. doi: 10.1021/acs.nanolett.7b02385
    [57]
    ZHAGN Jing, TANG Lemin, YU Qingcai, et al. Gold-platinum nanoflowers as colored and catalytic labels for ultrasensitive lateral flow MicroRNA-21 assay[J]. Sensors and Actuators B: Chemical,2021,344:130325. doi: 10.1016/j.snb.2021.130325
    [58]
    JIANG Tao, SONG Yang, DU Dan, et al. Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis[J]. ACS Sensors,2016,1(6):717−724. doi: 10.1021/acssensors.6b00019
    [59]
    CHENG Nan, SHI Qiurong, ZHU Chengzhou, et al. Pt-Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides[J]. Biosensors & Bioelectronics,2019,142:111498.
    [60]
    LIN Shan, ZHENG Danmin, LI Ailing, et al. Black oxidized 3, 3', 5, 5'-tetramethylbenzidine nanowires (oxTMB NWs) for enhancing Pt nanoparticle-based strip immunosensing[J]. Analytical and Bioanalytical Chemistry,2019,411(18):4063−4071. doi: 10.1007/s00216-019-01745-x
    [61]
    LIU Sijie, DOU Leina, YAO Xiaolin, et al. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range[J]. Biosensors & Bioelectronics,2020,169:112610.
    [62]
    TIAN Meiling, XIE Wenyue, ZHANG Ting, et al. A sensitive lateral flow immunochromatographic strip with prussian blue nanoparticles mediated signal generation and cascade amplification[J]. Sensors and Actuators B: Chemical,2020,309:127728. doi: 10.1016/j.snb.2020.127728
    [63]
    DUAN Demin, FAN Kelong, ZHANG Dexi, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosensors & Bioelectronics,2015,74:134−141.
    [64]
    WEN Congying, HU Jun, ZHAGN Zhiling, et al. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres[J]. Analytical Chemistry,2013,85(2):1223−1230. doi: 10.1021/ac303204q
    [65]
    HUAGN Yan, WEN Yongqiang, BARYEH K, et al. Magnetized carbon nanotubes for visual detection of proteins directly in whole blood[J]. Anal Chim Acta,2017,993:79−86. doi: 10.1016/j.aca.2017.09.025
    [66]
    WU Min, ZHANG Zhiling, CHEN Gang, et al. Rapid and quantitative detection of avian influenza A (H7N9) virions in complex matrices based on combined magnetic capture and quantum dot labeling[J]. Small,2015,11(39):5280−5288. doi: 10.1002/smll.201403746
    [67]
    SHARMAA A, TOK A I Y, LEE C, et al. Magnetic field assisted preconcentration of biomolecules for lateral flow assaying[J]. Sensors and Actuators B: Chemical,2019,285:431−437. doi: 10.1016/j.snb.2019.01.073
    [68]
    TSAI T T, HUANG T H, CHEN C A, et al. Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay[J]. Scientific Reports,2018,8(1):17319. doi: 10.1038/s41598-018-35694-9
    [69]
    ZHANG Sufeng, LIU Lina, TANG Ruihua, et al. Sensitivity enhancement of lateral flow assay by embedding cotton threads in paper[J]. Cellulose,2019,26(13-14):8087−8099. doi: 10.1007/s10570-019-02677-6
    [70]
    TANG Ye, GAO Hui, KURTH F, et al. Nanocellulose aerogel inserts for quantitative lateral flow immunoassays[J]. Biosensors and Bioelectronics,2012,192:113491.
    [71]
    CHOI J R, LIU Zhi, HU Jie, et al. Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing[J]. Analytical Chemistry,2016,88(12):6254−6264. doi: 10.1021/acs.analchem.6b00195
    [72]
    DANIELQ G, CHRISTINA S, ISRAEL G, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers[J]. Biosensors & Bioelectronics,2019,141:111407.
    [73]
    AMADEO S T, NGO D B, PAROLO C, et al. Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy[J]. Biosensors and Bioelectronics,2020,168:112559. doi: 10.1016/j.bios.2020.112559
    [74]
    KATIS I N, HE P J W, EASON R W, et al. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path[J]. Biosensors and Bioelectronics,2018,113:95−100. doi: 10.1016/j.bios.2018.05.001
    [75]
    WU Zhengzong, HE Deyun, XU Enbo, et al. Rapid detection of beta-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification[J]. Food Chemistry,2018,269:375−379. doi: 10.1016/j.foodchem.2018.07.011
    [76]
    CHOI J R, YONG K W, TANG Ruihua, et al. Lateral flow assay based on paper-hydrogel hybrid material for sensitive point-of-care detection of dengue virus[J]. Advanced Healthcare Materials,2017,6(1):1600920. doi: 10.1002/adhm.201600920
    [77]
    RIVAS L, MEDINA-SANCHEZ M, DE LA ESCOSURA-MUÑIZ A, et al. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics[J]. Lab on a Chip,2014,14(22):4406−4414. doi: 10.1039/C4LC00972J
    [78]
    TANG Ruihua, LIU Lina, ZHANG Sufeng, et al. Modification of a nitrocellulose membrane with cellulose nanofibers for enhanced sensitivity of lateral flow assays: Application to the determination of Staphylococcus aureus[J]. Microchimica Acta,2019,186(12):831. doi: 10.1007/s00604-019-3970-z
    [79]
    WANG Yiru, QIN Zhengpeng, BOULWARE D R, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry,2016,88(23):11774−11782. doi: 10.1021/acs.analchem.6b03406
    [80]
    HU Xiaoyan, WAN Jiangshan, PENG Xiaole, et al. Calorimetric lateral flow immunoassay detection platform based on the photothermal effect of gold nanocages with high sensitivity, specificity, and accuracy[J]. International Journal of Nanomedicine,2019,14:7695−7705. doi: 10.2147/IJN.S218834
    [81]
    QU Zhuo, WANG Kan, ALFRANCA G, et al. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification[J]. Nanoscale Research Letters,2020,15(1):10. doi: 10.1186/s11671-019-3240-3
    [82]
    SU Lihong, CHEN Yaqian, WANG Lulu, et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone[J]. Sensors and Actuators B: Chemical,2021,331:129431. doi: 10.1016/j.snb.2020.129431
    [83]
    WANG Rui, KIM K, CHOI N, et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips[J]. Sensors and Actuators B: Chemical,2018,270:72−79.
    [84]
    LI Yu, TANG Shusheng, ZHANG Wanjun, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk[J]. Sensors and Actuators B: Chemical,2019,282:703−711. doi: 10.1016/j.snb.2018.11.050
    [85]
    SHENG E, LU Yuxiao, XIAO Yue, et al. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip[J]. Biosensors and Bioelectronics,2021,181:113149. doi: 10.1016/j.bios.2021.113149
    [86]
    ZHANG Dan, DU Shuyuan, SU Shupeng, et al. Rapid detection method and portable device based on the photothermal effect of gold nanoparticles[J]. Biosensors and Bioelectronics,2019,123:19−24. doi: 10.1016/j.bios.2018.09.039
    [87]
    WANG Chongwen, WANG Chaoguang, WANG Xiaolong, et al. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces,2019,11(21):19495−19505.
    [88]
    YADAV S, SADIQUE M A, RANJAN P, et al. SERS based lateral flow immunoassay for point-of-Care detection of SARS-CoV-2 in clinical samples[J]. ACS Applied Bio Materials,2021,4(4):2974−2995. doi: 10.1021/acsabm.1c00102
    [89]
    XIAO Rui, LU Luchun, RONG Zhen, et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing[J]. Biosensors and Bioelectronics,2020,168:112524. doi: 10.1016/j.bios.2020.112524
    [90]
    LIN L K, STANCIU L A. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay[J]. Sensors and Actuators B: Chemical,2018,276:222−229. doi: 10.1016/j.snb.2018.08.068
    [91]
    SU Lihong, HU Huilan, TIAN Yanli, et al. Highly sensitive colorimetric/surface-enhanced raman spectroscopy immunoassay relying on a metallic core-shell Au/Au nanostar with clenbuterol as a target analyte[J]. Analytical Chemistry,2021,93(23):8362−8369. doi: 10.1021/acs.analchem.1c01487
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (729) PDF downloads (68) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return