ZHOU Qiwei, SONG Yanru, ZHANG Zhanshuo, et al. Rapid Detection of Heavy Metal Contaminated Tegillarca granosa by Temperature-dependent Near-infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(19): 326−330. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120125.
Citation: ZHOU Qiwei, SONG Yanru, ZHANG Zhanshuo, et al. Rapid Detection of Heavy Metal Contaminated Tegillarca granosa by Temperature-dependent Near-infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(19): 326−330. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120125.

Rapid Detection of Heavy Metal Contaminated Tegillarca granosa by Temperature-dependent Near-infrared Spectroscopy

More Information
  • Received Date: December 12, 2021
  • Available Online: August 02, 2022
  • Objective: To explore a rapid determination method of heavy metal contaminated shellfish based on enzymatic hydrolysis and temperature-dependent near infrared spectroscopy. Methods: Shellfish of Tegillarca granosa was reared artificially and used in this paper. Three heavy metals, including copper (Cu), cadmium (Cd) and lead (Pb), were used to contaminate Tegillarca granosa. The full protein supernatant samples of heavy metal-contaminated and healthy Tegillarca granosa were extracted by enzymolysis and centrifugation pretreatments. Fourier transform near-infrared spectroscopy (FT-NIR) was employed to collect spectra of each sample under the process of elevating temperature with each 5 ℃ interval in the range of 25~60 ℃, and a discriminant model was constructed to distinguish these samples contaminated with heavy metals. Results: Partial least square-discrimination analysis (PLS-DA) was used to identify the heavy metals contaminated Tegillarca granosa under each temperature. The accuracy rate was influenced by the temperature first increasing and then decreasing with raising the temperature. When the temperature of sample was kept at 40 ℃, the accuracy of discriminant model was 92%, and it can be improved up to 98% by the optimized parameters through variable selection methods. Conclusion: With the help of chemo-metrics, near infrared spectroscopy and enzymatic hydrolysis, the heavy metals-contaminated Tegillarca granosa can be quickly identified and the detection methods of heavy metal pollution of shellfish can be enriched.
  • [1]
    NAJI A, KHAN F R, HASHEM S H. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf[J]. Marine Pollution Bulletin,2016,109(1):667−671. doi: 10.1016/j.marpolbul.2016.05.002
    [2]
    ADEL M, OLIVERI C G, DADAR M, et al. Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: A food safety issue[J]. Food & Chemical Toxicology,2016,97:135−140.
    [3]
    林怡辰. 重金属在近岸海域海产品中的腹肌机器影响机制研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2021

    LIN Y C. Bioaccumulation and influential mechanisms of heavy metals in offshore seafood[D]. Yantai: Institute of Coastal Zone Research, University of Chinese Academy of Sciences, 2021.
    [4]
    ARDUINI F, PALLESCHI G. Screening and confirmatory methods for the detection of heavy metals in foods persistent organic[C]. Pollutants and Toxic Metals in Foods, Woodhead Publishing Series in Food Science Technology and Nutrition, Cambridge, 2013.
    [5]
    LIN C, JIE W, HUANG X J. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials[J]. Biosensors & Bioelectronics,2015,63(63):276−286.
    [6]
    MOHAMMAD B, TAPEH N, MAHYARI M, et al. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet[J]. Environmental Monitoring and Assessment,2014,186(11):7245−7257. doi: 10.1007/s10661-014-3924-1
    [7]
    SHENG R, CHENG W, LI H, et al. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy[J]. Postharvest Biology and Technology,2019,156:110952. doi: 10.1016/j.postharvbio.2019.110952
    [8]
    YUAN L M, MAO F, HUANG G, et al. Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology[J]. Postharvest Biology and Technology,2020,169:111308−111315. doi: 10.1016/j.postharvbio.2020.111308
    [9]
    WALSH K B, MCGLONE V A, HAN D H. The uses of near infra-red spectroscopy in postharvest decision support: A review[J]. Postharvest Biology and Technology,2020,163:111139. doi: 10.1016/j.postharvbio.2020.111139
    [10]
    PASQUINI C. Near infrared spectroscopy: A mature analytical technique with new perspectives-A review[J]. Analytica Chimica Acta,2018,1026:8−36.
    [11]
    MONNIER G F. A review of infrared spectroscopy in microarchaeology: Methods, applications, and recent trends[J]. Journal of Archaeological Science:Reports,2018,18:806−823. doi: 10.1016/j.jasrep.2017.12.029
    [12]
    孙岩, 蔡文生, 邵学广. 水光谱探针及其在结构分析中的应用[J]. 分析测试学报,2020,39(10):1204−1208. [SUN Y, CAI W S, SHAO X G. Water as a spectroscopic probe for detection of structural analysis[J]. Journal of Instrumental Analysis,2020,39(10):1204−1208. doi: 10.3969/j.issn.1004-4957.2020.10.004

    SUN Y, CAI W S, SHAO X G. Water as a spectroscopic probe for detection of structural analysis [J]. Journal of Instrumental Analysis, 2020, 39(10): 1204-1208. doi: 10.3969/j.issn.1004-4957.2020.10.004
    [13]
    赵洪涛, 孙岩, 郭一畅, 等. 近红外光谱用于低温水结构的分析[J]. 高等学校化学学报,2020,41(9):1968−1974. [ZHAO H T, SUN Y, GUO Y C, et al. Near infrared spectroscopy for low-temperature water structure analysis[J]. Chemical Journal of Chinese University,2020,41(9):1968−1974. doi: 10.7503/cjcu20200401

    ZHAO H, SUN Y, GUO Y, et al. Near infrared spectroscopy for low-temperature water structure analysis [J]. Chemical Journal of Chinese University, 2020, 41(9): 1968-1974. doi: 10.7503/cjcu20200401
    [14]
    孙彦华, 范永涛. 近红外光谱分析中温度影响的修正[J]. 光谱学与光谱分析,2020,40(6):1690−1695. [SUN Y H, FAN Y T. Correction of temperature influence in near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(6):1690−1695.

    SUN Y H, FAN Y T. Correction of temperature influence in near infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1690-1695.
    [15]
    樊梦丽, 赵越, 刘言, 等. 近红外光谱水光谱组学[J]. 化学进展,2015,27(Z1):242−250. [FAN M L, ZHAO Y, LIU Y, et al. Aquaphotomics of near infrared spectroscopy[J]. Progress in Chemistry,2015,27(Z1):242−250. doi: 10.7536/PC140803

    FAN M, ZHAO Y, LIU Y, et al. Aquaphotomics of near infrared spectroscopy [J]. Progress in Chemistry, 2015, 27(Z1): 242-250. doi: 10.7536/PC140803
    [16]
    汪明圆, 崔晓宇, 蔡文生, 等. 温控近红外光谱用于葡萄糖的高灵敏检测[J]. 化学学报,2020,78(2):125−129. [WANG M Y, CUI X Y, CAI W S, et al. Temperature-dependent near-infrared spectroscopy for sensitive detection of glucose[J]. Acta Chimica Sinica,2020,78(2):125−129. doi: 10.6023/A19120424

    WANG M Y, CUI X Y, CAI W S, et al. Temperature-dependent near-infrared spectroscopy for sensitive detection of glucose [J]. Acta Chimica Sinica, 2020, 78(2): 125-129. doi: 10.6023/A19120424
    [17]
    CUI X, YU X, CAI W, et al. Water as a probe for serum-based diagnosis by temperature-dependent near-infrared spectroscopy[J]. Talanta,2019,204:359−366. doi: 10.1016/j.talanta.2019.06.026
    [18]
    沈飞, 应义斌, 李博斌. 温度对黄酒酒精度和糖度近红外分析模型的影响[J]. 食品科学,2014,35(23):25−28. [SHEN F, YING Y B, LI B B. Influence of temperature on near-infrared spectroscopic analysis models of alcohol and sugar content in chinese rice wine[J]. Food Science,2014,35(23):25−28. doi: 10.7506/spkx1002-6630-201423005

    SHEN F, YIN Y B, LI B B. Influence of temperature on near-infrared spectroscopic analysis models of alcohol and sugar content in chinese rice wine [J]. Food Science, 2014, 35(23): 25-28. doi: 10.7506/spkx1002-6630-201423005
    [19]
    吴文娟, 李东, 王国祥, 等. 血液在可见光及近红外范围内随温度变化的动态吸收特性[J]. 化工学报,2013,64(4):1157−1162. [WU W J, LI D, WANG G X, et al. Dynamic optical absorption characteristic of human blood in visible and near infrared light with variable temperature[J]. CIESC Journal,2013,64(4):1157−1162. doi: 10.3969/j.issn.0438-1157.2013.04.004

    WU W J, LI D, WANG G X, et al. Dynamic optical absorption characteristic of human blood in visible and near infrared light with variable temperature [J]. CIESC Journal, 2013, 64(4): 1157-1162. doi: 10.3969/j.issn.0438-1157.2013.04.004
    [20]
    付庆波, 索辉, 贺馨平, 等. 温度影响下短波近红外酒精度检测的传递校正[J]. 光谱学与光谱分析,2012,32(8):2080−2084. [FU Q B, SUO H, HE X P, et al. Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra[J]. Spectroscopy and Spectral Analysis,2012,32(8):2080−2084. doi: 10.3964/j.issn.1000-0593(2012)08-2080-05

    FU Q B, SUO H, HE X P, et al. Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra [J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2080-2084. doi: 10.3964/j.issn.1000-0593(2012)08-2080-05
    [21]
    褚小立, 袁洪福, 王艳斌. 近红外稳健分析校正模型的建立(Ⅰ)—样品温度的影响[J]. 光谱学与光谱分析,2004(6):666−671. [ZHU X L, YUAN H F, WANG Y B. Developing robust near infrared calibration models—influence of sample’s temperature[J]. Spectroscopy and Spectral Analysis,2004(6):666−671. doi: 10.3321/j.issn:1000-0593.2004.06.008

    ZHU X J, YUAN H F, WANG Y B. Developing robust near infrared calibration models— influence of sample’s temperature [J]. Spectroscopy and Spectral Analysis, 2004(6): 666-671. doi: 10.3321/j.issn:1000-0593.2004.06.008
    [22]
    胡士成, 白凯伦, 毛丽婷, 等. 苹果糖度的光谱模型温度补偿设计[J]. 食品安全质量检测学报,2018,9(11):2716−2721. [HU S C, BAI K L, MAO L T, et al. Design of spectral model for temperature compensation in measurement of sugar content in apples[J]. Journal of Food Safety and Quality,2018,9(11):2716−2721. doi: 10.3969/j.issn.2095-0381.2018.11.028

    HU S C, BAI K L, MAO L T, et al. Design of spectral model for temperature compensation in measurement of sugar content in apples [J]. Journal of Food Safety and Quality, 2018, 9(11): 2716-2721. doi: 10.3969/j.issn.2095-0381.2018.11.028
    [23]
    ZHU L, PI J, WACHI S, et al. Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2008,294(3):469−477. doi: 10.1152/ajplung.00310.2007
    [24]
    ZOU X, ZHAO J, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta,2010,667(1–2):14−32.
    [25]
    CHEN X, LIU K, CAI J, et al. Identification of heavy metal- contaminated Tegillarca granosa using infrared spectroscopy[J]. Analytical Methods,2015,7(5):2172−2181. doi: 10.1039/C4AY02396J
    [26]
    XIE Z, MENG L, FENG X, et al. Identification of heavy metal-contaminated Tegillarca granosa using laser-induced breakdown spectroscopy and linear regression for classification[J]. Plasma Science & Technology,2020,22(8):9−17.
    [27]
    JI G, YE P, SHI Y, et al. Laser-induced breakdown spectroscopy for rapid discrimination of heavy-metal-contaminated seafood Tegillarca granosa[J]. Sensors,2017,17(11):2655−2665. doi: 10.3390/s17112655
  • Cited by

    Periodical cited type(2)

    1. 陈星星. 水产品中重金属分析技术的研究进展. 浙江农业科学. 2023(06): 1404-1407 .
    2. 闫奕霏,高薪,汤修映. 基于近红外漫反射光谱的面包老化过程中非冻结水含量无损检测. 食品安全质量检测学报. 2022(22): 7264-7271 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (139) PDF downloads (10) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return