Citation: | ZHOU Qiwei, SONG Yanru, ZHANG Zhanshuo, et al. Rapid Detection of Heavy Metal Contaminated Tegillarca granosa by Temperature-dependent Near-infrared Spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(19): 326−330. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120125. |
[1] |
NAJI A, KHAN F R, HASHEM S H. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf[J]. Marine Pollution Bulletin,2016,109(1):667−671. doi: 10.1016/j.marpolbul.2016.05.002
|
[2] |
ADEL M, OLIVERI C G, DADAR M, et al. Heavy metal concentrations in edible muscle of whitecheek shark, Carcharhinus dussumieri (elasmobranchii, chondrichthyes) from the Persian Gulf: A food safety issue[J]. Food & Chemical Toxicology,2016,97:135−140.
|
[3] |
林怡辰. 重金属在近岸海域海产品中的腹肌机器影响机制研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2021
LIN Y C. Bioaccumulation and influential mechanisms of heavy metals in offshore seafood[D]. Yantai: Institute of Coastal Zone Research, University of Chinese Academy of Sciences, 2021.
|
[4] |
ARDUINI F, PALLESCHI G. Screening and confirmatory methods for the detection of heavy metals in foods persistent organic[C]. Pollutants and Toxic Metals in Foods, Woodhead Publishing Series in Food Science Technology and Nutrition, Cambridge, 2013.
|
[5] |
LIN C, JIE W, HUANG X J. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials[J]. Biosensors & Bioelectronics,2015,63(63):276−286.
|
[6] |
MOHAMMAD B, TAPEH N, MAHYARI M, et al. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet[J]. Environmental Monitoring and Assessment,2014,186(11):7245−7257. doi: 10.1007/s10661-014-3924-1
|
[7] |
SHENG R, CHENG W, LI H, et al. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy[J]. Postharvest Biology and Technology,2019,156:110952. doi: 10.1016/j.postharvbio.2019.110952
|
[8] |
YUAN L M, MAO F, HUANG G, et al. Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology[J]. Postharvest Biology and Technology,2020,169:111308−111315. doi: 10.1016/j.postharvbio.2020.111308
|
[9] |
WALSH K B, MCGLONE V A, HAN D H. The uses of near infra-red spectroscopy in postharvest decision support: A review[J]. Postharvest Biology and Technology,2020,163:111139. doi: 10.1016/j.postharvbio.2020.111139
|
[10] |
PASQUINI C. Near infrared spectroscopy: A mature analytical technique with new perspectives-A review[J]. Analytica Chimica Acta,2018,1026:8−36.
|
[11] |
MONNIER G F. A review of infrared spectroscopy in microarchaeology: Methods, applications, and recent trends[J]. Journal of Archaeological Science:Reports,2018,18:806−823. doi: 10.1016/j.jasrep.2017.12.029
|
[12] |
孙岩, 蔡文生, 邵学广. 水光谱探针及其在结构分析中的应用[J]. 分析测试学报,2020,39(10):1204−1208. [SUN Y, CAI W S, SHAO X G. Water as a spectroscopic probe for detection of structural analysis[J]. Journal of Instrumental Analysis,2020,39(10):1204−1208. doi: 10.3969/j.issn.1004-4957.2020.10.004
SUN Y, CAI W S, SHAO X G. Water as a spectroscopic probe for detection of structural analysis [J]. Journal of Instrumental Analysis, 2020, 39(10): 1204-1208. doi: 10.3969/j.issn.1004-4957.2020.10.004
|
[13] |
赵洪涛, 孙岩, 郭一畅, 等. 近红外光谱用于低温水结构的分析[J]. 高等学校化学学报,2020,41(9):1968−1974. [ZHAO H T, SUN Y, GUO Y C, et al. Near infrared spectroscopy for low-temperature water structure analysis[J]. Chemical Journal of Chinese University,2020,41(9):1968−1974. doi: 10.7503/cjcu20200401
ZHAO H, SUN Y, GUO Y, et al. Near infrared spectroscopy for low-temperature water structure analysis [J]. Chemical Journal of Chinese University, 2020, 41(9): 1968-1974. doi: 10.7503/cjcu20200401
|
[14] |
孙彦华, 范永涛. 近红外光谱分析中温度影响的修正[J]. 光谱学与光谱分析,2020,40(6):1690−1695. [SUN Y H, FAN Y T. Correction of temperature influence in near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(6):1690−1695.
SUN Y H, FAN Y T. Correction of temperature influence in near infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1690-1695.
|
[15] |
樊梦丽, 赵越, 刘言, 等. 近红外光谱水光谱组学[J]. 化学进展,2015,27(Z1):242−250. [FAN M L, ZHAO Y, LIU Y, et al. Aquaphotomics of near infrared spectroscopy[J]. Progress in Chemistry,2015,27(Z1):242−250. doi: 10.7536/PC140803
FAN M, ZHAO Y, LIU Y, et al. Aquaphotomics of near infrared spectroscopy [J]. Progress in Chemistry, 2015, 27(Z1): 242-250. doi: 10.7536/PC140803
|
[16] |
汪明圆, 崔晓宇, 蔡文生, 等. 温控近红外光谱用于葡萄糖的高灵敏检测[J]. 化学学报,2020,78(2):125−129. [WANG M Y, CUI X Y, CAI W S, et al. Temperature-dependent near-infrared spectroscopy for sensitive detection of glucose[J]. Acta Chimica Sinica,2020,78(2):125−129. doi: 10.6023/A19120424
WANG M Y, CUI X Y, CAI W S, et al. Temperature-dependent near-infrared spectroscopy for sensitive detection of glucose [J]. Acta Chimica Sinica, 2020, 78(2): 125-129. doi: 10.6023/A19120424
|
[17] |
CUI X, YU X, CAI W, et al. Water as a probe for serum-based diagnosis by temperature-dependent near-infrared spectroscopy[J]. Talanta,2019,204:359−366. doi: 10.1016/j.talanta.2019.06.026
|
[18] |
沈飞, 应义斌, 李博斌. 温度对黄酒酒精度和糖度近红外分析模型的影响[J]. 食品科学,2014,35(23):25−28. [SHEN F, YING Y B, LI B B. Influence of temperature on near-infrared spectroscopic analysis models of alcohol and sugar content in chinese rice wine[J]. Food Science,2014,35(23):25−28. doi: 10.7506/spkx1002-6630-201423005
SHEN F, YIN Y B, LI B B. Influence of temperature on near-infrared spectroscopic analysis models of alcohol and sugar content in chinese rice wine [J]. Food Science, 2014, 35(23): 25-28. doi: 10.7506/spkx1002-6630-201423005
|
[19] |
吴文娟, 李东, 王国祥, 等. 血液在可见光及近红外范围内随温度变化的动态吸收特性[J]. 化工学报,2013,64(4):1157−1162. [WU W J, LI D, WANG G X, et al. Dynamic optical absorption characteristic of human blood in visible and near infrared light with variable temperature[J]. CIESC Journal,2013,64(4):1157−1162. doi: 10.3969/j.issn.0438-1157.2013.04.004
WU W J, LI D, WANG G X, et al. Dynamic optical absorption characteristic of human blood in visible and near infrared light with variable temperature [J]. CIESC Journal, 2013, 64(4): 1157-1162. doi: 10.3969/j.issn.0438-1157.2013.04.004
|
[20] |
付庆波, 索辉, 贺馨平, 等. 温度影响下短波近红外酒精度检测的传递校正[J]. 光谱学与光谱分析,2012,32(8):2080−2084. [FU Q B, SUO H, HE X P, et al. Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra[J]. Spectroscopy and Spectral Analysis,2012,32(8):2080−2084. doi: 10.3964/j.issn.1000-0593(2012)08-2080-05
FU Q B, SUO H, HE X P, et al. Transfer calibration for alcohol determination using temperature-induced shortwave near infrared spectra [J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2080-2084. doi: 10.3964/j.issn.1000-0593(2012)08-2080-05
|
[21] |
褚小立, 袁洪福, 王艳斌. 近红外稳健分析校正模型的建立(Ⅰ)—样品温度的影响[J]. 光谱学与光谱分析,2004(6):666−671. [ZHU X L, YUAN H F, WANG Y B. Developing robust near infrared calibration models—influence of sample’s temperature[J]. Spectroscopy and Spectral Analysis,2004(6):666−671. doi: 10.3321/j.issn:1000-0593.2004.06.008
ZHU X J, YUAN H F, WANG Y B. Developing robust near infrared calibration models— influence of sample’s temperature [J]. Spectroscopy and Spectral Analysis, 2004(6): 666-671. doi: 10.3321/j.issn:1000-0593.2004.06.008
|
[22] |
胡士成, 白凯伦, 毛丽婷, 等. 苹果糖度的光谱模型温度补偿设计[J]. 食品安全质量检测学报,2018,9(11):2716−2721. [HU S C, BAI K L, MAO L T, et al. Design of spectral model for temperature compensation in measurement of sugar content in apples[J]. Journal of Food Safety and Quality,2018,9(11):2716−2721. doi: 10.3969/j.issn.2095-0381.2018.11.028
HU S C, BAI K L, MAO L T, et al. Design of spectral model for temperature compensation in measurement of sugar content in apples [J]. Journal of Food Safety and Quality, 2018, 9(11): 2716-2721. doi: 10.3969/j.issn.2095-0381.2018.11.028
|
[23] |
ZHU L, PI J, WACHI S, et al. Identification of Nrf2-dependent airway epithelial adaptive response to proinflammatory oxidant-hypochlorous acid challenge by transcription profiling[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2008,294(3):469−477. doi: 10.1152/ajplung.00310.2007
|
[24] |
ZOU X, ZHAO J, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta,2010,667(1–2):14−32.
|
[25] |
CHEN X, LIU K, CAI J, et al. Identification of heavy metal- contaminated Tegillarca granosa using infrared spectroscopy[J]. Analytical Methods,2015,7(5):2172−2181. doi: 10.1039/C4AY02396J
|
[26] |
XIE Z, MENG L, FENG X, et al. Identification of heavy metal-contaminated Tegillarca granosa using laser-induced breakdown spectroscopy and linear regression for classification[J]. Plasma Science & Technology,2020,22(8):9−17.
|
[27] |
JI G, YE P, SHI Y, et al. Laser-induced breakdown spectroscopy for rapid discrimination of heavy-metal-contaminated seafood Tegillarca granosa[J]. Sensors,2017,17(11):2655−2665. doi: 10.3390/s17112655
|
1. |
陈星星. 水产品中重金属分析技术的研究进展. 浙江农业科学. 2023(06): 1404-1407 .
![]() | |
2. |
闫奕霏,高薪,汤修映. 基于近红外漫反射光谱的面包老化过程中非冻结水含量无损检测. 食品安全质量检测学报. 2022(22): 7264-7271 .
![]() |