LI Yaxian, TIAN Huaixiang, YU Haiyan, et al. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120117.
Citation: LI Yaxian, TIAN Huaixiang, YU Haiyan, et al. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120117.

Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats

More Information
  • Received Date: December 12, 2021
  • Available Online: April 13, 2022
  • To investigate the arsenic pollution in health food raw materials and to ensure the quality and safety of health food, the contents of total arsenic and inorganic arsenic in 14 kinds of health food raw materials from 16 habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC/ICP-MS), respectively. The relationship between arsenic concentration and signal intensity is linear with R2 higer than 0.9999 in range of 0~100 μg/L. The relative standard deviation (RSD) of detecting results of health food raw materials were from 0.00% to 2.52%, and the precision was satisfactory. The total arsenic content was between (0.0004~0.3900) mg/kg, which did not exceed the health food limit standard. The content of the inorganic arsenic was (0.0003~0.1962) mg/kg. Among them, total arsenic and inorganic arsenic content of Hebei honeysuckle was the highest, the contents of arsenic in ginseng from Jilin, jujube from Xinjiang, walnut from Yunnan, white peony root from Anhui, cornus officinalis from Shanxi and Hericium erinaceus from Fujian were low. The total arsenic contents of ginseng, jujube and walnut meat were the same and the lowest, 0.0004 mg/kg, and the inorganic arsenic contents were also the same, 0.0003 mg/kg. The data of arsenic residues in a variety of health food raw materials were given, which expanded the arsenic content database of health food raw materials and would provide an important reference for arsenic pollution risk assessment.
  • [1]
    ZHAO J, GE L Y, XIONG W, et al. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014)[J]. Journal of Chromatography A,2016,1428:39−54. doi: 10.1016/j.chroma.2015.09.006
    [2]
    谷善勇, 骆骄阳, 刘好, 等. 高效液相色谱电感耦合等离子体质谱法检测17种大宗常用中草药中砷元素形态[J]. 中国中药杂志,2019,44(14):3078−3086. [GU Shanyong, LUO Jiaoyang, LIU Hao, et al. Determination of arsenic species in 17 common Chinese herbal medicines by high performance liquid chromatographyinductively coupled plasma mass spectrometry[J]. China Journal of Chinese Materia Medica,2019,44(14):3078−3086.
    [3]
    FALLAHZADEH R A, GHANEIAN M T, MIRI M, et al. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources[J]. Environmental Science and Pollution Research,2017,24:24790−24802. doi: 10.1007/s11356-017-0102-3
    [4]
    ZUO T T, JIN H Y, ZHANG L, et al. Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data[J]. Pharmacological Research,2020,163:104987.
    [5]
    袁宇琳, 张静, 毛腾霄, 等. 成都市售即食中药预包装产品重金属含量分析及健康风险评估[J]. 中国实验方剂学杂志,2018,24(24):213−218. [YUAN Yulin, ZHANG Jing, MAO Tengxiao, et al. Heavy metal content analysis and health risk assessment of readytoeat Chinese medicine prepackaged products sold in Chengdu[J]. Chinese Journal of Experimental Formulas,2018,24(24):213−218.
    [6]
    ZHUANG Yongliang, XIAO Junjiang, SUN Liping, et al. Research progress on the bioaccumulation of cadmium, lead, mercury and arsenic by edible fungi[J]. Journal of Food Science and Technology,2019,37(3):19−32.
    [7]
    王红波. 中药饮片发展现状及质量管理中存在的问题与分析[J]. 世界最新医学信息文摘,2017,17(17):194−195. [WANG Hongbo. Development status of traditional Chinese medicine decoction pieces and problems and analysis in quality management[J]. Digest of World Latest Medical Information,2017,17(17):194−195.
    [8]
    李耀磊, 徐健, 金红宇等. 冬虫夏草及产区土壤中5种重金属及有害元素污染评价[J]. 药物分析杂志,2019,39(4):677−684. [LI Yaolei, XU Jian, JIN Hongyu et al. Pollution evaluation of 5 heavy metals and harmful elements in Cordyceps sinensis and soil in the production area[J]. Journal of Pharmaceutical Analysis,2019,39(4):677−684.
    [9]
    吕翔, 王佳佳, 邵霞, 等. 砷元素形态分析和在中药研究中的应用进展[J]. 中成药,2017,39(8):1679−1683. [LÜ Xiang, WANG Jiajia, SHAO Xia, et al. Speciation analysis of arsenic and its application in traditional Chinese medicine research[J]. Chinese Patent Medicine,2017,39(8):1679−1683. doi: 10.3969/j.issn.1001-1528.2017.08.029
    [10]
    程敏, 展敏, 谭丽容, 等. 口服液类保健食品中18种重金属元素检测[J]. 现代食品科技,2019,35(2):285−290,269. [CHENG Min, ZHAN Min, TAN Lirong, et al. Detection of 18 heavy metal elements in oral liquid health foods[J]. Modern Food Science and Technology,2019,35(2):285−290,269.
    [11]
    李爱阳, 黄建华. 应用氢化物发生微波等离子体原子发射光谱分析食用菌中总砷含量[J/OL]. 食品科学: 18[2021-09-29]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1712.042.html.

    LI Aiyang, HUANG Jianhua. Using hydride generationmicrowave plasma atomic emission spectrometry to analyze the total arsenic content in edible fungi[J/OL]. Food Science: 18[2021-09-29]. http://kns.cnki. net/kcms/detail/11.2206.TS.20201211.1712.042.html.
    [12]
    陈双阳, 陈贵堂, 胡秋辉, 等. 市售食用菌中砷的形态分析以及健康风险评价[J]. 食品工业科技,2020,41(1):180−188. [CHEN Shuangyang, CHEN Guitang, HU Qiuhui, et al. Speciation analysis and health risk assessment of arsenic in edible fungi on the market[J]. Science and Technology of Food Industry,2020,41(1):180−188.
    [13]
    刘威, 王振中, 胡军华, 等. ICP-MS对牡丹皮中24种微量元素的形态及其溶出特性分析[J]. 中国实验方剂学杂志,2017,23(3):39−44. [LIU Wei, WANG Zhenzhong, HU Junhua, et al. Analysis of the morphology and dissolution characteristics of 24 trace elements in Moutan cortex by ICP-MS[J]. Chinese Journal of Experimental Formulas,2017,23(3):39−44.
    [14]
    SUN L, MA X, JIN H Y, et al. Geographical origin differentiation of Chinese Angelica by specific metal element fingerprinting and risk assessment[J]. Environmental Science and Pollution Research,2020,27(2):1−13.
    [15]
    于丽, 顾俊杰, 张宁. ICP-MS法测定四种中药材中重金属含量[J]. 福建分析测试,2020,29(4):47−49. [YU Li, GU Junjie, ZHANG Ning. Determination of heavy metals in four Chinese medicinal materials by ICP-MS[J]. Fujian Analysis and Testing,2020,29(4):47−49. doi: 10.3969/j.issn.1009-8143.2020.04.09
    [16]
    DENG X, LI R, DENG S. Determination of the total content of arsenic, antimony, selenium and mercury in Chinese herbal food by chemical vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J]. Journal of Fluorescence,2020,30(4):949−954. doi: 10.1007/s10895-020-02569-0
    [17]
    WANG Z, WANG H, WANG H, et al. Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines[J]. The Science of the Total Environment,2019,653(FEB.25):748−757.
    [18]
    YANG C M, CHIEN M Y, CHAO P C, et al. Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicinet[J]. Journal of Hazardous Materials,2021,412:125142.
    [19]
    FU L, SHI S Y, CHEN X Q. Accurate quantification of toxic elements in medicine food homologous plants using ICP-MS/MS[J]. Food Chemistry,2018,245:692−697. doi: 10.1016/j.foodchem.2017.10.136
    [20]
    CHEN Y, JIANG Z, LI J, et al. Study on the arsenic content of Ophiocordyceps sinensis in Sichuan Province[J]. Medicinal Plant,2018,9(1):47−49.
    [21]
    ZHANG J, BARAKIEWICZ D, WANG Y, et al. Arsenic and arsenic speciation in mushrooms from China: A review[J]. Chemosphere,2020,246:125685. doi: 10.1016/j.chemosphere.2019.125685
    [22]
    KHAN I, AWAN S A, RIZWAN M, et al. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review[J]. Environmental Pollution,2021,286:117389. doi: 10.1016/j.envpol.2021.117389
    [23]
    BALI A S, SIDHU G. Arsenic acquisition, toxicity and tolerance in plants-From physiology to remediation: A review[J]. Chemosphere,2021(7):131050.
    [24]
    REHMAN M U, KHAN R, KHAN A, et al. Fate of arsenic in living systems: Implications for sustainable and safe food chains[J]. Journal of Hazardous Materials,2021,417(1):126050.
    [25]
    DOS S, SILVA J, LEMOS V A, et al. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry[J]. Microchemical Journal,2018,143:175−180. doi: 10.1016/j.microc.2018.08.004
    [26]
    左甜甜, 张磊, 石上梅, 等. 10种根和根茎类保健食品原料中重金属及有害元素的风险评估及最大限量理论值[J]. 药物分析杂志,2020,40(10):1870−1876. [ZUO Tiantian, ZHANG Lei, SHI Shangmei, et al. Risk assessment and theoretical maximum limit values of heavy metals and harmful elements in 10 root and rhizome Chinese medicinal materials[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(10):1870−1876.
    [27]
    AHMAD H, ZHAO Lihua, LIU Changkun, et al. Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-AES determination[J]. Food Chemistry,2021,338:128028. doi: 10.1016/j.foodchem.2020.128028
    [28]
    KOMOROWICZ I, HANC A, LORENC W, et al. Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector[J]. Chemosphere,2019,233:223−233. doi: 10.1016/j.chemosphere.2019.05.130
    [29]
    SEGURA F R, SOUZA J, PAULA E, et al. Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: is there any difference in arsenic content?[J]. Food Research International,2016,89:169−176. doi: 10.1016/j.foodres.2016.07.011
    [30]
    JIA Xiaoyo, GONG Dirong, WANG Jiani, et al. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC/ICP-MS determination[J]. Talanta,2016,160:437−443. doi: 10.1016/j.talanta.2016.07.050
    [31]
    TANG F, NI Z, LU Y, et al. Arsenic speciation in honeysuckle (Lonicera japonica Thunb. ) from China[J]. Biologica Trace Element Research,2015,168(1):269−275. doi: 10.1007/s12011-015-0327-2
    [32]
    STACKELBERG K V, WILLIAMS P R D, ERNESTO S T. A systematic framework for collecting site-specific sampling and survey data to support analyses of health impacts from land-based pollution in low- and middle-income countries[J]. International Journal of Environmental Research and Public Health,2021,18(9):4676−4685. doi: 10.3390/ijerph18094676
    [33]
    李艳苹, 王翠翠, 刘小骐, 等. 液相色谱-原子荧光联用测定海水中无机砷和有机砷[J]. 海洋技术学报,2020,39(3):6−10. [LI Yanping, WANG Cuicui, LIU Xiaoqi, et al. Determination of inorganic arsenic and organic arsenic in seawater by liquid chromatography-atomic fluorescence[J]. Journal of Marine Technology,2020,39(3):6−10.
  • Cited by

    Periodical cited type(10)

    1. 严鹤松,段坦,雷晶晶,王佳,张晓曼,李玥,舒玉凤,李婵娟. Caldicellulosiruptor owensensis木聚糖酶的融合表达、酶学性质研究及在面包烘焙中的应用. 食品与发酵工业. 2024(14): 120-125 .
    2. 张玉玺,刘星宇,齐肖亚,饶欢,赵丹丹,郝建雄,刘学强. 耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改良中的应用. 食品工业科技. 2024(24): 82-89 . 本站查看
    3. 杨行,马俊文,李延啸,江正强,刘学强,闫巧娟. 毛壳霉木聚糖酶B(CsXyn11B)的分泌表达及其在面包中的应用. 食品工业科技. 2023(04): 108-113 . 本站查看
    4. 徐卓越,詹磊,王玉牛,李紫华,詹忆维,陈佩. 三种食品添加剂对粉圆抗老化特性的研究. 中国食品添加剂. 2023(02): 197-202 .
    5. 洪静,郭婉雪,郑学玲,李盘欣,王红新,黄亚男. 不同加工方式的淀粉质食品老化的影响因素和延缓老化方法的研究进展. 河南工业大学学报(自然科学版). 2023(02): 127-133 .
    6. 于章龙,刘瑞,蔡岳,宋昱,孙元琳,关硕. 运黑161全麦粉面包配方研究. 山西农业大学学报(自然科学版). 2023(04): 107-119 .
    7. 孙力博,刘远晓,李萌萌,关二旗,卞科. 发酵面团持气性及品质改良研究进展. 食品与发酵工业. 2023(20): 323-330 .
    8. 刘玉春,张维清,任菲,郭超,王超. 裂褶菌极端嗜盐木聚糖酶ScXyn22的性质及对全麦面包品质的影响. 食品科学. 2022(18): 127-133 .
    9. 张露晶,张昕茹,王鑫. 添加食用菌发酵液的全麦面包的研究进展. 中国食用菌. 2021(04): 104-107+112 .
    10. 陈艳红,郑胜蓝,李慧雪,李利君,倪辉. 全麦粉面包生产工艺优化. 食品与机械. 2021(11): 173-177 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (203) PDF downloads (33) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return