ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, et al. Effect of Cooling Rate on Freeze-drying Characteristics of Pear Melon Cells[J]. Science and Technology of Food Industry, 2022, 43(19): 31−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120035.
Citation: ZHANG Zhe, LANG Yuanlu, WU Qiaoyan, et al. Effect of Cooling Rate on Freeze-drying Characteristics of Pear Melon Cells[J]. Science and Technology of Food Industry, 2022, 43(19): 31−42. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120035.

Effect of Cooling Rate on Freeze-drying Characteristics of Pear Melon Cells

More Information
  • Received Date: December 05, 2021
  • Available Online: August 01, 2022
  • In order to explore the effect of cooling rate on the freeze-drying process of pear melon cells, the pear melon cells were subjected to different cooling rates (5, 15, 25, 35, 50 °C/min) based on cryomicroscopy imaging technology and vacuum freeze-drying technology. The freeze-drying visualization experiment was carried out, and the changes of cell morphological parameters (equivalent diameter, area, circumference, volume) and internal pressure during the freeze-drying process were analyzed. The characteristic parameters of porous materials (porosity) of dry tissue were studied. The results showed that: The freezing temperature generally decreased with the increase of the cooling rate. During the freeze-drying process, when the cooling rate was 25 °C/min, the changes of cell morphological parameters and internal pressure were the smallest. With the increase of cooling rate, the change rate of cell morphological parameters and internal pressure first decreased and then slowly increased. The cell morphology and internal pressure of pear melons changed greatly under too high and too low cooling rates, which was not conducive to the freeze-drying of pear melons. When the cooling rate was greater than 5 ℃/min, the porosity was larger and less affected by the cooling rate, and only small fluctuations occured within a certain range. The optimal cooling rate of pear melon was 25 ℃/min, and the cell morphology and solute damage were the least at this cooling rate.
  • [1]
    O ALVES-FILHO T, EIKEVIK A, MULET C, et al. Kinetics and mass transfer during atmospheric freeze drying of red pepper[J]. Drying Technology,2007,25(7-8):1155−1161. doi: 10.1080/07373930701438469
    [2]
    汤石生, 马道宽, 刘军, 等. 三种不同预处理的冻干苹果片品质比较[J]. 现代食品科技,2021,37(7):169−175. [TANG S S, MA D K, LIU J, et al. Comparison of three kinds of pretreatment on quality of freeze-dried apple slices[J]. Modern Food Science and Technology,2021,37(7):169−175. doi: 10.13982/j.mfst.1673-9078.2021.7.1212

    TANG S S, MA D K, LIOU J, et al. Comparison of three kinds of pretreatment on quality of freeze-dried apple slices[J]. Modern Food Science and Technology, 2021, 37(7): 169-175. doi: 10.13982/j.mfst.1673-9078.2021.7.1212
    [3]
    RAHAMAN M, MEKHILEF S, MUSTAYEN B, et al. Mathematical modelling and experimental validation of solar drying of mushrooms[J]. International Journal of Green Energy, 2016, 13(4): 344-351.
    [4]
    RAHAMAN M, JOARDDER U H, KHAN M I H, et al. Multi-scale model of food drying: Current status and challenges[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(5).
    [5]
    GONZALEZ C M, LLORCA E, QUILES A, et al. Water sorption and glass transition in freeze-dried persimmon slices. Effect on physical properties and bioactive compounds[J]. LWT-Food Science and Technology,2020,130:109633. doi: 10.1016/j.lwt.2020.109633
    [6]
    ZARAGOTAS D, LIOLIOS N T, ANASTASSOPOULOS E, et al. Supercooling, ice nucleation and crystal growth: A systematic study in plant samples[J]. Cryobiology,2016:239−243.
    [7]
    NDOYE F T, ALVAREZ G. Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement[J]. Journal of Food Engineering,2015,148:24−34. doi: 10.1016/j.jfoodeng.2014.09.014
    [8]
    TAKAKO N, YUKIO K, TADASHI K, et al. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH[J]. Cryobiology,2016,73(1):30−39. doi: 10.1016/j.cryobiol.2016.06.002
    [9]
    MDNAHIDUL I, MIN Z, ZHONGXIANG F, et al. Direct contact ultrasound assisted freezing of mushroom (Agaricus bisporus): Growth and size distribution of ice crystals[J]. International Journal of Refrigeration,2015,57:46−53. doi: 10.1016/j.ijrefrig.2015.04.021
    [10]
    YU G, YAP Y R, POLLOCK K, et al. Characterizing intracellular ice formation of lymphoblasts using low-temperature ramanspectroscopy[J]. Biophysical Journal,2017,112(12):2653. doi: 10.1016/j.bpj.2017.05.009
    [11]
    XU D, WANG H, WANG Y, et al. Ice crystal growth of living onion epidermal cells as affected by freezing rates[J]. International Journal of Food Properties,2018,21(1):606−617. doi: 10.1080/10942912.2018.1439506
    [12]
    陈超杰, 王曜, 徐如颖, 等. 不同冷却方式对冷鲜鸡肉品质的影响[J]. 包装工程,2021,42(11):26−32. [CHEN C J, WANG Y, XU R Y, et al. Effects of different cooling methods on the qualities of chicken meat[J]. Packaging Engineering,2021,42(11):26−32. doi: 10.19554/j.cnki.1001-3563.2021.11.004

    CHEN C J, WANG Y, XU R Y, et al. Effects of different cooling methods on the qualities of chicken meat[J]. Packaging Engineering, 2021, 42(11): 26-32. doi: 10.19554/j.cnki.1001-3563.2021.11.004
    [13]
    KASPER J C, FRIESS W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals[J]. European Journal of Pharmaceutics & Biopharmaceutics,2011,78(2):248−263.
    [14]
    PATAPOFF T W, OVERCASHIER D E. The importance of freezing on lyophilization cycle development[J]. BioPharm International,2002,15(3):16−21.
    [15]
    李俊奇, 李保国. 药品真空冷冻干燥过程监控技术研究进展[J]. 化工进展,2015,34(8):3128−3132. [LI J Q, LI B G. Research progress in monitoring and control technology for pharmaceutical freeze-drying process[J]. Chemical industry and Engineering Progress,2015,34(8):3128−3132.

    LI J Q, LI B G. Research progress in monitoring and control technology for pharmaceutical freeze-drying process[J]. Chemical industry And Engineering Progress, 2015, 34(8): 3128-3132.
    [16]
    SHISHEHGARHA F, MAKHLOUF J, RATTI C. Freeze-drying characteristics of strawberries[J]. Dry Technol,2002,20:131−145. doi: 10.1081/DRT-120001370
    [17]
    张哲, 赵静, 田津津, 等. 冷冻-复温过程中葡萄细胞结晶变化研究[J]. 农业机械学报,2016,47(5):211−217. [ZHANG Z, ZHAO J, TIAN J J, et al. Research on crystallization change of grape cells during freezing-thawing process[J]. Journal of Agricultural Machinery,2016,47(5):211−217. doi: 10.6041/j.issn.1000-1298.2016.05.029

    ZHANG Z, ZHAO J, TIAN J J, et al. Research on crystallization change of grape cells during freezing-thawing process[J]. Journal of Agricultural Machinery, 2016, 47(5): 211-217. doi: 10.6041/j.issn.1000-1298.2016.05.029
    [18]
    刘斌, 周晓静, 王瑞星, 等. 冻结速率对洋葱细胞的影响[J]. 热科学与技术,2014,13(1):22−28. [LIU B, ZHOU X J, WANG R X, et al. Effect of freezing rate on onion cells[J]. Journal of Thermal Science and Technology,2014,13(1):22−28. doi: 10.3969/j.issn.1671-8097.2014.01.004

    LIOU B, ZHOU X J, WANG R X, et al. Effect of freezing rate on onion cells[J]. Journal of Thermal Science and Technology, 2014, 13(1): 22-28. doi: 10.3969/j.issn.1671-8097.2014.01.004
    [19]
    韦玉龙, 于宁, 许铭强, 等. 热风干制温度对枣果微观组织结构的影响[J]. 农业工程学报,2016,32(7):244−251. [WEI Y L, YU N, XU M Q, et al. Effect of hot air drying temperature on the microstructure of jujube fruit[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(7):244−251. doi: 10.11975/j.issn.1002-6819.2016.07.034

    WEI Y L, YU N, XU M Q, et al. Effect of hot air drying temperature on the microstructure of jujube fruit[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7) : 244-251. doi: 10.11975/j.issn.1002-6819.2016.07.034
    [20]
    PRICKETT R C, MARQUEZ-CURTIS L A, ELLIOTT J A, et al. Effect of supercooling and cell volume on intracellular ice formation[J]. Cryobiology,2015,70(2):156−163. doi: 10.1016/j.cryobiol.2015.02.002
    [21]
    CHI C D, LI X X, ZHANG Y P, et al. Understanding the effect of freeze-drying on microstructures of starch hydrogels[J]. Food Hydrocolloids,2020:101.
    [22]
    赵博, 王薇, 白斌, 等. 差式扫描量热法测定熔融温度质量控制技术[J]. 中国标准化,2021(8):162−165. [ZHAO B, WANG W, BAI B, et al. Quality control technique for the determination of melting temperature by differential scanning calorimetry[J]. China Standardization,2021(8):162−165. doi: 10.3969/j.issn.1002-5944.2021.08.040

    WANG B, WANG W, BAI B, et al. Quality control technique for the determination of melting temperature by differential scanning calorimetry[J]. China Standardization, 2021(8): 162-165. doi: 10.3969/j.issn.1002-5944.2021.08.040
    [23]
    袁伊航, 徐梦浛, 牛旭锋. 明胶-胶原复合凝胶联合诱导因子调控大鼠骨髓间充质干细胞的肝向分化[J]. 中国组织工程研究,2022,26(16):2510−2515. [YUAN Y H, XU M H, NIU X F. Gelatin collagen composite hydrogel and inducible factor regulate differentiation of rat bone marrow mesenchymal stem cells into hepatocyte-like cells[J]. Chinese Journal of Tissue Engineering Research,2022,26(16):2510−2515. doi: 10.12307/2022.249

    YUAN Y H, XU M H, NIOU X F. Gelatin collagen composite hydrogel and inducible factor regulate differentiation of rat bone marrow mesenchymal stem cells into hepatocyte-like cells[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(16) : 2510 -2515. doi: 10.12307/2022.249
    [24]
    柯程虎, 张辉, 保秀娟. 团聚形核壳结构冰晶粒子的激光散射特性[J]. 红外与激光工程,2019,48(8):70−76. [KE C H, ZHANG H, BAO X J. Laser scattering properties of agglomerated nucleated shell-structured ice crystallite[J]. Infrared and Laser Engineering,2019,48(8):70−76.

    KE C H, ZHANG H, BAO X J. Laser scattering properties of agglomerated nucleated shell-structured ice crystallite[J]. Infrared and Laser Engineering, 2019, 48(8): 70-76.
    [25]
    王超, 刘斌, 黄国锋, 等. 蒜薹冰温贮藏期的细胞分形结构变化分析[J]. 冷藏技术,2018,41(3):15−20. [WANG C, LIU B, HUANG G F, et al. Analysis of cellular fractal structure changes of garlic during ice storage[J]. Journal of Refrigeration Technology,2018,41(3):15−20. doi: 10.3969/j.issn.1674-0548.2018.03.004

    WANG C, LIOU B, HUANG G F, et al. Analysis of cellular fractal structure changes of garlic during ice storage[J]. Journal of Refrigeration Technology, 2018, 41(3): 15-20. doi: 10.3969/j.issn.1674-0548.2018.03.004
    [26]
    施轶炜, 王文, 匡以武, 等. 低温输运管道的液氮预冷过程仿真分析[J]. 低温与超导,2021,49(11):79−87. [SHI Y W, WANG W, KUANG Y W, et al. Simulation of cryogenic pipeline chill-down with liquid nitrogen[J]. Cryogenics/Refrigeration,2021,49(11):79−87. doi: 10.16711/j.1001-7100.2021.11.014

    SHI T W, WANG W, KUANG Y W, et al. Simulation of cryogenic pipeline chill-down with liquid nitrogen[J]. Cryogenics/Refrigeration, 2021, 49(11): 79-87. doi: 10.16711/j.1001-7100.2021.11.014
    [27]
    徐曈晖, 李洋. 冻融方法对果蔬品质维持的研究进展[J]. 食品工业,2021,42(5):349−352. [XU T H, LI Y. Research process of freeze-thaw methods for quality maintenance of fruits and vegetables[J]. Food Industry,2021,42(5):349−352.

    XU T H, LI Y. Research process of freeze-thaw methods for quality maintenance of fruits and vegetables[J]. Food Industry, 2021, 42(5): 349-352.
    [28]
    荆红彭. 猪肉超冰温保鲜技术研究[D]. 天津: 天津商业大学, 2015.

    JING H P. Study on controlled supercolling-point storage characteristics of pork[D]. Tianjin: Tianjin University of Commerce, 2015.
    [29]
    徐垚. 贮运过程中果蔬细胞组织损伤机理微观实验研究[D]. 天津: 天津商业大学, 2019.

    XU Y. Experimental study on the mechanism of cell tissue damage in fruits and vegetables during storage and transportation[D]. Tianjin: Tianjin University of Commerce, 2019.
    [30]
    彭润玲, 徐成海, 李全顺, 等. 螺旋藻细胞冷冻过程微尺度传热传质特性[J]. 低温工程,2006(4):63−68. [PENG R L, XU C H, LI Q S, et al. Micro-scale heat and mass transfer characteristics of spirulina cell during freezing[J]. Cryogenic,2006(4):63−68. doi: 10.3969/j.issn.1000-6516.2006.04.014

    PENG R L, XU C H, LI Q S, et al. Micro-scale heat and mass transfer characteristics of spirulina cell during freezing[J]. Cryogenic, 2006(4): 63-68. doi: 10.3969/j.issn.1000-6516.2006.04.014
    [31]
    KOBAYASHI R, SUZUKI T. Effect of supercooling accompanying the freezing process on ice crystals and the quality of frozen strawberry tissue[J]. International Journal of Refrigeration,2019,99:94−100.
    [32]
    赵延强. 具有初始孔隙多孔物料冷冻干燥的实验研究[D]. 大连: 大连理工大学, 2015.

    ZHAO Y Q. Experimental study on freeze drying of porous materials with initial porosity from aqueous solution[D]. Dalian: Dalian University of Technology, 2015.
  • Related Articles

    [1]SUN Ruiyin, WANG Ruixue, E Jingjing, YAO Caiqing, HE Zongbai, ZHANG Qiaoling, CHEN Zichao, MA Rongze, BAO Qiuhua, WANG Junguo. Effect of Calcium Ions on the Freeze-drying Resistance of Lactobacillus plantarum LIP-1[J]. Science and Technology of Food Industry, 2021, 42(17): 100-106. DOI: 10.13386/j.issn1002-0306.2020110151
    [2]ZOU Yong, WEI Rifeng, HUANG Weiqing, ZHOU Fengfang, LIN Shan, ZHENG Shizhong, JIANG Shengtao, LI Dongdong, LIU Wei. Effects of Chimonanthus salicifolius Aleoholic Extracts on Growth, Muscle Quality and Intestinal Morphology of Larimichthys crocea[J]. Science and Technology of Food Industry, 2021, 42(4): 18-25. DOI: 10.13386/j.issn1002-0306.2020050157
    [3]JIA Zhen-yu, SUN Hui-hui, HAO Xu-sheng, KANG Shen-min, ZHENG Xiao-ying, GUO Du, SUN Yi, SHI Chao, XIA Xiao-dong. Inhibitory Activity of Thymol and Carvacrol Against Cronobacter sakazakii[J]. Science and Technology of Food Industry, 2018, 39(20): 79-86. DOI: 10.13386/j.issn1002-0306.2018.20.014
    [4]LIU Shuai, ZHAO Guan-hua, YANG Qing-qing, TONG Chang-qing, LI Wei. Effect of a lectin CSL on the morphology of yeast Saccharomyces cerevisiae[J]. Science and Technology of Food Industry, 2017, (24): 114-119. DOI: 10.13386/j.issn1002-0306.2017.24.023
    [5]CHU Thi-le-hoa, XIE Jia, HE Song-gui, YU Jian-xia, LI Wei-gang, WU Zhen-qiang. Evaluation of immersion using warm water on the removal of off-flavor from raw pork and its weight loss[J]. Science and Technology of Food Industry, 2016, (23): 328-332. DOI: 10.13386/j.issn1002-0306.2016.23.053
    [6]YANG Xu-qiu, CHEN Jian-feng, ZHENG Xiang-nan, XIE You-ping. Effects of light intensity and nitrogen limitation on cell growth and cell composition of Chlorella sorokiniana[J]. Science and Technology of Food Industry, 2016, (18): 246-250. DOI: 10.13386/j.issn1002-0306.2016.18.038
    [7]WANG Peng-fei, DI Qian-qian, LIU Bin, ZHOU Xiao-jing. Effect of freezing rate on some structural parameters of carrot cells[J]. Science and Technology of Food Industry, 2015, (10): 125-129. DOI: 10.13386/j.issn1002-0306.2015.10.017
    [8]LIU Bin, LI Yuan-yuan, WANG Xiao-ming, CAO Feng-bo, HUO Gui-cheng, YANG Li-jie. Effect of colostrum growth factors extracts on proliferation and migration of CaCO-2 cells[J]. Science and Technology of Food Industry, 2015, (07): 354-358. DOI: 10.13386/j.issn1002-0306.2015.07.066
    [9]SHEN Yu-zhen, YU Hai-ning, ZHANG Cheng-cheng, ZENG Si-min, SHEN Sheng-rong. Effects of condensed fish oil on the growth of prostate cells in vitro[J]. Science and Technology of Food Industry, 2014, (12): 358-364. DOI: 10.13386/j.issn1002-0306.2014.12.070
    [10]WANG Dan, LEI Yong-dong, MA Yue, ZHANG Li, ZHAO Xiao-yan. Effect of anthocyanins from three kind of purple plants on ST cells growth[J]. Science and Technology of Food Industry, 2013, (23): 104-107. DOI: 10.13386/j.issn1002-0306.2013.23.024
  • Cited by

    Periodical cited type(11)

    1. 王鑫,杨梦媛,修伟业,遇世友,王景阳,马永强. 甜玉米芯多糖铁配合物的工艺优化及体外活性. 精细化工. 2024(10): 2280-2289 .
    2. 鲍彤彤,崔海燕,段然,纪龙翔,吕向云,高乐,吴信. 大豆蛋白肽-微量元素螯合物的制备及结构表征. 食品与发酵工业. 2024(21): 170-174 .
    3. 李小军,马晓辉,段国建,姜红,曾凡逵,高作旺,董文静,王引权,晋玲. 兰州百合多糖铁(Ⅲ)配合物制备工艺的Box-Behnken响应面法优化及其体外抗氧化活性评价. 现代食品科技. 2024(12): 201-208 .
    4. 杜国丰,尹梦琪,梁飞龙,姜宁,陈红漫,矫继峰,刘凤翊. 微波辅助H_2O_2/V_C降解制备低分子量浒苔多糖的研究. 食品工业科技. 2023(12): 37-44 . 本站查看
    5. 高然,苏贇,陈俊德,郑美华. 硫酸软骨素螯合锌的制备、表征及体外生物活性. 食品工业科技. 2022(09): 194-202 . 本站查看
    6. 毛嘉敏,陈昱瑶,宋洁,张燕,王婧贤,李馨雨,范柳萍,成向荣. 具有铁螯合能力的驴骨胶原肽酶解条件优化及微观形态. 粮油食品科技. 2022(05): 188-196 .
    7. 钟普鹏,胡嘉宁,胡德宝,秦顺义,洪亮,马吉飞,李桂霞,李瑞忠. 姬松茸多糖铁(Ⅲ)合成方法的研究. 食品科技. 2021(03): 232-237 .
    8. 舒畅,夏洁,袁帅,赵帅,张西锋,鄢又玉. 响应面优化羧甲基茯苓多糖铁复合物的制备. 食品研究与开发. 2019(08): 188-194+211 .
    9. 张喜峰,崔晶,王文琴,罗光宏,杨生辉. 螺旋藻多糖铁(Ⅲ)配合物的制备、抗氧化及淋巴细胞增殖活性. 精细化工. 2019(06): 1097-1103 .
    10. 景永帅,张瑞娟,吴兰芳,郑玉光,高心悦,郝彤宇,张丹参. 多糖铁复合物的结构特征和生理活性研究进展. 食品研究与开发. 2019(22): 203-208 .
    11. 李石清,袁强,蒋福升,张婷,张春椿. 制首乌多糖Fe(Ⅲ)配合物的合成及吸附动力学研究. 中国现代中药. 2019(10): 1382-1385 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (178) PDF downloads (16) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return