LI Peiqi, JIANG Shan, DAI Qun, et al. Isolation, Identification and Biological Characteristics of Pathogenic Fungi from Kiwifruit and Pakchoi[J]. Science and Technology of Food Industry, 2022, 43(19): 146−153. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120003.
Citation: LI Peiqi, JIANG Shan, DAI Qun, et al. Isolation, Identification and Biological Characteristics of Pathogenic Fungi from Kiwifruit and Pakchoi[J]. Science and Technology of Food Industry, 2022, 43(19): 146−153. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120003.

Isolation, Identification and Biological Characteristics of Pathogenic Fungi from Kiwifruit and Pakchoi

More Information
  • Received Date: November 30, 2021
  • Available Online: July 31, 2022
  • Objective: Kiwifruit (Actinidia chinensis Planch.) and pakchoi (Brassica rapa var. chinensis) are easy to rot due to pathogens during storage and transportation, resulting in economic losses. Therefore, it is necessary to understand the species and characteristics of pathogenic bacteria for prevention and control of pathogenic bacteria. Methods: In this study, pathogenic fungus were isolated from infected kiwifruit and pakchoi, and identified by pathogenicity identification, morphology identification, and Internal Transcribed Spacer identification. The biological characterization of these pathogenic fungus were also investigated. Results: Four pathogenic fungi were isolated and purified from infected kiwifruit, and identified as Cytospora sp., Penicillium polonicum, Botrytis californica, Trichoderma gamsii, respectively. Three pathogenic fungi were isolated and purified from infected pakchoi, and identified as Fusarium circinatum, Cladosporium angustiterminale, Botrytis californica, respectively. Cytospora sp. could grow in the range of 10~28 ℃. The other 6 pathogenic fungi could grow in the range of 4~30 ℃, and the optimum growth temperature of these pathogenic fungi was 20~28 ℃. Except for Cladosporium angustiterminale, the optimum pH value of the other six pathogenic fungi was between 6 and 8. Cladosporium angustiterminale was more resistant to acid, and its optimum pH value might be below 4. Cytospora sp. could grow in the pH range of 4~9, and the other 6 strains could grow in the pH range of 4~10. Conclusion: After pathogenicity identification, it was found that these seven strains could cause the decay of kiwifruit and pakchoi, and Botrytis californica could cause the decay of kiwifruit and pakchoi at the same time. Penicillium polonicum, Botrytis californica, Trichoderma gamsii and Cladosporium angustiterminale could all grow at 4 ℃, indicating that the temperature of refrigeration could not prevent these pathogens from infusing fruits and vegetables. This study provided a reference basis for the control of pathogenic fungi in kiwifruit and green vegetables.
  • [1]
    王树庆, 张咏梅, 战伟伟. 蔬菜贮运中微生物腐败及其防治[J]. 食品研究与开发,2014,35(15):101−103. [WANG S Q, ZHANG Y M, ZHAN W W. Microbiological spoilage and prevention of vegetables on storage and transportation[J]. Food Research and Development,2014,35(15):101−103.

    WANG S Q, ZHANG Y M, ZHAN W W. Microbiological spoilage and prevention of vegetables on storage and transportation[J]. Food Research and Development, 2014, 35(15): 101-103.
    [2]
    吕国忠. 植物病原菌物学—不能抛弃的形态分类与不能拒绝的分子分析[J]. 菌物学报,2012,31(4):461−464. [LÜ G Z. Plant pathogenic mycology—the un-given-up morphological taxonomy and MR-refused molecular analysis[J]. Mycosystema,2012,31(4):461−464.

    LU G Z. Plant pathogenic mycology—the un-given-up morphological taxonomy and MR—refused molecular analysis[J]. Mycosystema, 2012, 31(4): 461-464.
    [3]
    BĂLĂCENOIU F, NEȚOIU C, TOMESCU R, et al. Chemical control of Corythucha arcuata (Say, 1832), an invasive alien species, in oak forests[J]. Forests,2021,12(6):770−770. doi: 10.3390/f12060770
    [4]
    RAYAMAJHI M B, ROHRIG E, LAKE E C, et al. Phenological synchrony between a weed (Dioscorea bulbifera) and a biocontrol agent (Lilioceris cheni) in the introduced range, Florida: Implications for biological control[J]. Biocontrol Science and Technology,2021,31(8):797−816. doi: 10.1080/09583157.2021.1885627
    [5]
    马成涛, 胡青, 杨德奎. 土壤有益微生物防治植物病害的研究进展[J]. 山东科学,2007,20(6):61−67. [MA C T, HU Q, YANG D K. Research progress of soil beneficial microorganisms controlling plant diseases[J]. Shandong Science,2007,20(6):61−67.

    MA C T, HU Q, YANG D K, Shandong Science, 2007, 20(6): 61-67.
    [6]
    侯贺丽, 张阳阳, 马玉轩, 等. 猕猴桃的抗氧化研究进展[J]. 农技服务,2020,37(9):6−9. [HOU H L, ZHANG Y Y, MA Y X, et al. Advances in antioxidant research of Actinidia chinensis Planch[J]. Agricultural Service,2020,37(9):6−9.

    HOU H L, ZHANG Y Y, MA Y X, et al. Advances in antioxidant research of Actinidia chinensis Planch[J]. Agricultural Service, 2020, 37(9): 6-9.
    [7]
    ROMANAZZI G. Gray mold infection of Actinidia arguta in Italy[J]. Plant Disease,2009,93(11):1221.
    [8]
    王忠肃, 唐显富, 刘绍基. 猕猴桃细菌溃疡病(Actinidia bacterial canker)病原细菌鉴定[J]. 西南农业大学学报,1992(6):500−503. [WANG Z S, TANG X F, LU S J. Identification of pathogenic fungus of Actinidia bacterial canker[J]. China Cucurbits and Vegetables,1992(6):500−503.

    WANG Z S, TANG X F, LU S J. Identification of pathogenic fungus of Actinidia bacterial canker[J]. China Cucurbits and Vegetables, 1992(6): 500-503.
    [9]
    LI L, PAN H, CHEN M Y, et al. Isolation and identification of pathogenic fungi causing postharvest fruit rot of kiwifruit (Actinidia chinensis) in China[J]. Journal of Phytopathology,2017,165(11-12):782−790. doi: 10.1111/jph.12618
    [10]
    任军, 雷洲, 刘登科, 等. 我国猕猴桃软腐病的研究进展[J]. 江苏农业科学,2020,48(8):29−32. [REN J, LEI Z, LIU D K, et al. Research progress of kiwifruit soft rot in China[J]. Jiangsu Agricultural Sciences,2020,48(8):29−32.

    REN J, LEI Z, LIU D K, et al. Research progress of kiwifruit soft rot in China[J]. Jiangsu Agricultural Sciences, 2020, 48(8): 29-32.
    [11]
    LIU Y, YIN X, YANG Y, et al. Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa) sucrose transporter gene family[J]. Plant Diversity,2017,39(3):123−129. doi: 10.1016/j.pld.2017.05.006
    [12]
    KUMARI S, JO J S, CHOI H S, et al. Molecular characterization and expression analysis of MYB transcription factors involved in the glucosinolate pathway in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Agronomy,2019,9(12):807−807. doi: 10.3390/agronomy9120807
    [13]
    俞晓琴. 小白菜食用价值及栽培技术[J]. 吉林蔬菜,2013,2(53):8−11. [YU X Q. Edible value and cultivation technology of Pakchoi[J]. Jilin Vegetables,2013,2(53):8−11.

    YU X Q. Edible value and cultivation technology of Pakchoi[J]. Jilin Vegetables, 2013, 2(53): 8-11.
    [14]
    刘小华, 郝延伟, 杨旭英, 等. 十字花科蔬菜霜霉病绿色防控技术[J]. 西北园艺(综合),2021(2):44−45. [LIU X H, HAO Y W, YANG X Y, et al. Green prevention and control techniques of downy mildew in cruciferous vegetables[J]. Northwest Horticulture,2021(2):44−45.

    LIU X H, HAO Y W, YANG X Y, et al. Green prevention and control techniques of downy mildew in cruciferous vegetables[J]. Northwest Horticulture, 2021(2), 44-45.
    [15]
    肖长坤, 李勇, 李健强. 十字花科蔬菜种传黑斑病研究进展[J]. 中国农业大学学报,2003,8(5):61−68. [XIAO C K, LI Y, LI J Q. Research in seed-borne black spot disease in Cruciferous vegetables[J]. Journal of China Agricultural University,2003,8(5):61−68.

    XIAO C K, LI Y, LI J Q. Research in seed-borne black spot disease in Cruciferous vegetables[J]. Journal of China Agricultural University, 2003, 8(5), 61-68.
    [16]
    USHIMARU T, TAKUMA H, TERADA K, et al. Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer[J]. Molecular Genetics and Genomics:MGG,2010,284(5):357−371. doi: 10.1007/s00438-010-0572-1
    [17]
    李焕玲. 蔬菜四种细菌性新病害病原菌的鉴定研究[D]. 北京: 中国农业科学院, 2013

    LI H L. Identification of four new pathogenic fungus causing diseases of vegetables[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [18]
    侯喜林, 李英, 黄菲艺. 不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展[J]. 园艺学报,2020,47(9):1663−1677. [HOU X L, LI Y, HUANG F Y. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage (Brassica campestris ssp. chinensis)[J]. Acta Horticulturae Sinica,2020,47(9):1663−1677.

    HOU X L, LI Y, HUANG F Y. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage (Brassica campestris ssp. chinensis)[J]. Acta Horticulturae Sinica, 2020, 47(9): 1663-1677.
    [19]
    温丹, 王晓, 孙凯宁, 等. 不同形态微生物菌剂对不结球白菜生长和品质的影响[J]. 应用生态学报,2021,32(5):1777−1782. [WEN D, WANG X, SUN K L, et al. Effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino (non-heading Chinese cabbage)[J]. Chinese Journal of Applied Ecology,2021,32(5):1777−1782.

    WEN D, WANG X, SUN K L, et al. Effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino (non-heading Chinese cabbage)[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1777-1782.
    [20]
    王嫚, 林洁, 李佩琪, 等. 胡蔓藤内生真菌分离鉴定及抗菌活性研究[J]. 生物学通报,2020,61(2):77−87. [MOURA V S, POLLETTINI F L, FERRAZ L P, et al. Purification of a killer toxin from Aureobasidium pullulans for the biocontrol of phytopathogens[J]. Journal of Basic Microbiology,2020,61(2):77−87.

    MOURA V S, POLLETTINI F L, FERRAZ L P, et al. Purification of a killer toxin from Aureobasidium pullulans for the biocontrol of phytopathogens[J]. Journal of Basic Microbiology, 2020, 61(2): 77-87.
    [21]
    黄瑞环, 韩小斌, 刘京, 等. 海洋曲霉和海洋木霉抗植物病原菌活性次级代谢产物研究进展[J]. 江苏农业学报,2021,36(5):1332−1341. [HUANG R H, HAN X B, LU J, et al. Research progress on secondary metabolites with anti-phytopathogenic activities of marine-derived Aspergillus sp. and Trichoderma sp

    J]. Jiangsu Journal of Agricultural Sciences,2021,36(5):1332−1341.
    [22]
    ANUPAMA R, ANUSHA B. Isolation, purification and characterisation of bacteriocin producing Lactobacillus species and its antimicrobial efficacy against food borne pathogens[J]. Indian Journal of Microbiology Research,2018,5(2):147−150.
    [23]
    孟雪娇, 史庆馨, 许春梅, 等. 黑龙江省大白菜黑腐病病原菌的分离与鉴定[J]. 中国瓜菜,2021,34(7):20−24. [MENG X J, SHI Q X, XUI C M, et al. Isolation and identification of pathogenic fungus of black rot in Chinese cabbage in Heilongjiang[J]. China Cucurbits and Vegetables,2021,34(7):20−24.

    MENG X J, SHI Q X, XUI C M, et al. Isolation and identification of pathogenic fungus of black rot in Chinese cabbage in Heilongjiang[J]. China Cucurbits and Vegetables, 2021, 34(7): 20-24.
    [24]
    赵严, 罗登杰, 何圣贤, 等. 水稻细菌性条斑病4种接种方法的比较[J]. 亚热带农业研究,2018,14(4):242−246. [ZHAO Y, LUO D J, HE S X, et al. Comparative study on four inoculation methods of rice bacterial leaf streak[J]. Subtropical Agriculture Research,2018,14(4):242−246.

    ZHAO Y, LUO D J, HE S X, et al. Comparative study on four inoculation methods of rice bacterial leaf streak[J]. Subtropical Agriculture Research, 2018, 14(4): 242-246.
    [25]
    YANG S, WANG X Y, QIU X, et al. Isolation and purification of a new Bacillus subtilis strain from deer dung with anti-microbial and anti-cancer activities[J]. Current Medical Science,2021,41(4):832−840. doi: 10.1007/s11596-021-2383-5
    [26]
    魏景超, 真菌鉴定手册[M]. 上海: 科学技术出版社, 1979

    WEI J C. Identification manual[M]. Shanghai: Science Press, 1979.
    [27]
    曹学仁, 周益林. 基于PCR技术的植物病原菌分子定量检测技术研究进展[J]. 植物保护,2020,46(4):7−11. [CAO X R, ZHOU Y L. Research progress in quantitative detection of plant pathogens using PCR technique[J]. Plant Protection,2020,46(4):7−11.

    CAO X R, ZHOU Y L. Research progress in quantitative detection of plant pathogens using PCR technique[J]. Plant Protection, 2020, 46(4): 7-11.
    [28]
    裴月令, 孙燕芳, 冯推紫, 等. 辣椒新叶斑病病原鉴定及其生物学特性[J]. 热带作物学报,2021,42(9):2659−2665. [PEI Y L, SUN Y F, FENG T Z, et al. Pathogen identification for the new leaf spot disease of Capsicum annuum L. and its biological characteristics[J]. Chinese Journal of Tropical Crops,2021,42(9):2659−2665.

    PEI Y L, SUN Y F, FENG T Z, et al. Pathogen identification for the new leaf spot disease of Capsicum annuum L. and its biological characteristics[J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2659-2665.
    [29]
    SUSMITA S, ABDUL J H, FARIA F R, et al. Predator performance of Coccinella transversalis and its molecular identification[J]. Bangladesh Journal of Zoology,2019,47(2):229−241. doi: 10.3329/bjz.v47i2.44334
  • Cited by

    Periodical cited type(4)

    1. 王菁,胡萍. 双酶法制备红豆多肽的工艺优化及其抗氧化活性. 食品研究与开发. 2023(09): 152-156 .
    2. 谷俊华,邢晓轲. 不同酶对藜麦蛋白肽制备的影响及其抗氧化活性研究. 中国食品添加剂. 2022(01): 69-74 .
    3. 林冰洁,薛鹏,荆金金,张若愚,季晓迎,韩彩静,张丰香. 不同蛋白酶制备藜麦麸皮多肽及其活性研究. 食品与发酵工业. 2021(03): 114-119+127 .
    4. 徐霞,刘靖,宋雨,胡燕梅,黎丽,谭林凤,赵钢,邹亮. 基于胆酸盐吸附作用的藜麦蛋白质酶解工艺研究. 食品工业科技. 2020(15): 192-197 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (279) PDF downloads (31) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return