YANG Xin, QIN Lina, JIANG Xianzhang. Analysis of Codon Usage Bias in the Genome of Trichoderma reesei[J]. Science and Technology of Food Industry, 2022, 43(6): 141−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110338.
Citation: YANG Xin, QIN Lina, JIANG Xianzhang. Analysis of Codon Usage Bias in the Genome of Trichoderma reesei[J]. Science and Technology of Food Industry, 2022, 43(6): 141−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110338.

Analysis of Codon Usage Bias in the Genome of Trichoderma reesei

More Information
  • Received Date: November 28, 2021
  • Available Online: January 17, 2022
  • Codon usage bias is quite different among different organisms. To elucidate the genetic codon preference in the most commonly used industrial strain Trichoderma reesei, codon usage analysis was performed with the opening reading frames of 9352 genes in T. reesei. The results showed that the GC content of 97% of T. reesei genes was 50%~68%, and the average content of GC3 was 70.4%. Neutral analysis and ENC-plot analysis demonstrated that the usage bias of T. reesei codons was mainly affected by selection pressure. Correlation analysis results revealed that the GC content of the genome was significantly correlated with GC1, GC2 and GC3 (P<0.05), and the number of effective codons was significantly correlated with GC3 (P<0.05). In addition, among the 24 codons frequently used by T. reesei, 22 of them contained G or C in their wobble position. Moreover, 21 codons associated with relatively effective gene expression and 4 codons relevant to optimal gene expression were further identified. The analysis also showed that the codon usage bias in T. reesei was similar to that in Trichoderma longibrachiatum and Neurospora crassa, while it was relatively different from that in Saccharomyces cerevisiae. The study herein would provide a feasible and advantageous method for genetic codon optimization in T. reesei, which would contribute to developing T. reesei as an excellent host for recombinant gene expression, as well as chassis for synthetic biology.
  • [1]
    KEMURA T. Codon usage and tRNA content in unicellular and multicellular organisms[J]. Molecular Biology and Evolution,1985,2:13−34.
    [2]
    DAS S, ROYMONDAL U, SAHOO S. Analyzing gene expression from relative codon usage bias in yeast genome: A statistical significance and biological relevance[J]. Gene,2009,443(1-2):121−31. doi: 10.1016/j.gene.2009.04.022
    [3]
    MORIYAMA E N. Codon usage bias and tRNA Abundance in Drosophila[J]. Journal of Molecular Evolution,1997,45(5):514−523. doi: 10.1007/PL00006256
    [4]
    DURET L, MOUCHIROUD D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(8):4482−4487. doi: 10.1073/pnas.96.8.4482
    [5]
    MORIYAMA E. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli[J]. Nucleic Acids Research,1998,26(19):3188.
    [6]
    GUPTA S K, MAJUMDAR S, BHATTACHARYA T K, et al. Studies on the relationships between the synonymous codon usage and protein secondary structural units[J]. Biochemical and Biophysical Research Communications,2000,269(3):692−696. doi: 10.1006/bbrc.2000.2351
    [7]
    SHARP P M, BAILES E, GROCOCK R J, et al. Variation in the strength of selected codon usage bias among bacteria[J]. Nucleic Acids Resarch,2005,33(4):1141−1153. doi: 10.1093/nar/gki242
    [8]
    SHARP P M, TUOHY T M, MOSURSKI K R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes[J]. Nucleic Acids Resarch,1986,14(13):5125−5143. doi: 10.1093/nar/14.13.5125
    [9]
    ZHOU T, SUN X, LU Z. Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae[J]. Gene,2006,368:117−125. doi: 10.1016/j.gene.2005.10.035
    [10]
    CHIAPELLO H, LISACEK F, CABOCHE M, et al. Codon usage and gene function are related in sequences of Arabidopsis thaliana[J]. Gene,1998,209(1):1−38.
    [11]
    SHARP P M, ELIZABETH C, HIGGINS D G, et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity[J]. Nucleic Acids Resarch,1988,16(17):8207−8211. doi: 10.1093/nar/16.17.8207
    [12]
    BISCHOF R H, RAMONI J, SEIBOTH B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei[J]. Microbial Cell Factories,2016,15(1):106. doi: 10.1186/s12934-016-0507-6
    [13]
    ZIELIŃSKA D, SZENTNER K, WAśKIEWICZ A, et al. Production of nanocellulose by enzymatic treatment for application in polymer composites[J]. Materials,2021,14(9):2124. doi: 10.3390/ma14092124
    [14]
    KUMAR M R, KUMARAN M D, BALASHANMUGAM P. Production of cellulase enzyme by Trichoderma reesei Cefl9 and its application in the production of bio-ethanol[J]. Pakistan Journal of Pharmaceutical Sciences,2014,17(5):735−739.
    [15]
    PEIL S, BECKERS S J, FISCHER J, et al. Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases[J]. Materials Today Bio,2020,7:100061. doi: 10.1016/j.mtbio.2020.100061
    [16]
    LICHTENBERG J, PEREZ C E, MADSEN K, et al. Safety evaluation of a novel muramidase for feed application[J]. Regulatory Toxicology and Pharmacology,2017,89:57−69. doi: 10.1016/j.yrtph.2017.07.014
    [17]
    LANDOWSKI C P, HUUSKONEN A, WAHL R, et al. Enabling low cost biopharmaceuticals: a systematic approach to delete proteases from a well-known protein production host Trichoderma reesei[J]. PLoS One,2015,10(8):e0134723. doi: 10.1371/journal.pone.0134723
    [18]
    SALOHEIMO M, CULLEN D, MARTINEZ D, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)[J]. Nature Biotechnology,2008,26(5):553−560. doi: 10.1038/nbt1403
    [19]
    MICHAEL S. ROSENBERG M S, SUBRAMANIAN S, KUMAR S. Patterns of transitional mutation biases within and among mammalian genomes[J]. Molecular Biology and Evolution,2003,20(6):988−993. doi: 10.1093/molbev/msg113
    [20]
    SUEOKA N. Directional mutation pressure and neutral molecular evolution[J]. Proceedings of the National Academy of Sciences,1988,85:2653−2657. doi: 10.1073/pnas.85.8.2653
    [21]
    WRIGHT F. The 'effective number of codons' used in a gene[J]. Gene,1990,87(1):23−29. doi: 10.1016/0378-1119(90)90491-9
    [22]
    LIU H, RUI H, ZHANG H, et al. Analysis of synonymous codon usage in Zea mays[J]. Molecular Biology Reports,2010,37(2):677−684. doi: 10.1007/s11033-009-9521-7
    [23]
    SUEOKA N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. Journal of Molecular Evolution,2001,53(4-5):469−476. doi: 10.1007/s002390010237
    [24]
    FUGLSANG A. The 'effective number of codons' revisited[J]. Biochemical and Biophysical Research Communications,2004,317(3):957−964. doi: 10.1016/j.bbrc.2004.03.138
    [25]
    刘庆坡, 薛庆中. 粳稻叶绿体基因组的密码子用法[J]. 作物学报, 2004, 30(12): 1220-1224.

    LIU Q P, XUE Q Z. Codon usage in the chloroplast genome of rice (Oryza sativa L. ssp. japonica)[J]. Acta Agronomica Sinica, 2004, 30(12); 1220-1224.
    [26]
    ZHANG W J, JIE Z, LI Z F, et al. Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear Genes in Triticum aestivum L[J]. Journal of Integrative Plant Biology,2007,49(2):246−254. doi: 10.1111/j.1744-7909.2007.00404.x
    [27]
    范三红, 郭蔼光, 单丽伟, 等. 拟南芥基因密码子偏爱性分析[J]. 生物化学与生物物理进展,2003,30(2):221−225. [FAN S H, GUO A G, SHAN L W, et al. Analysis of genetic code preference in Arabidopsis thaliana[J]. Progress in Biochemistry and Biophysics,2003,30(2):221−225. doi: 10.3321/j.issn:1000-3282.2003.02.012
    [28]
    JENKINS G M, HOLMES E C. The extent of codon usage bias in human RNA viruses and its evolutionary origin[J]. Virus Research,2003,92(1):1−7. doi: 10.1016/S0168-1702(02)00309-X
    [29]
    SUEOKA N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position[J]. Gene,1999,238(1):53−58. doi: 10.1016/S0378-1119(99)00320-0
    [30]
    GUSTAFSSON C, GOVINDARAJAN S, MINSHULL J. Codon bias and heterologous protein expression[J]. Trends is Biotechnology,2004,22(7):346−53. doi: 10.1016/j.tibtech.2004.04.006
    [31]
    CHERRY J R, FIDANSTSEF A L. Directed evolution of industrial enzymes: an update[J]. Current Opinion in Biotechnology,2003,14(4):438−443. doi: 10.1016/S0958-1669(03)00099-5
    [32]
    VISSER H, JOOSTEN V, PUNT P J, et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1[J]. Industrial Biotechnology,2011,7(3):214−223. doi: 10.1089/ind.2011.7.214
    [33]
    NOVEMBRE J A. Accounting for background nucleotide composition when measuring codon usage bias[J]. Molecular Biology and Evolution,2002(8):1390.
    [34]
    SUN F F, BAI R, YANG H, et al. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris[J]. Enzyme and Microbial Technology,2016,92:107−116. doi: 10.1016/j.enzmictec.2016.07.004
    [35]
    白仁惠, 张云博, 王春迪, 等. 里氏木霉Cel5A基因优化及其在毕赤酵母中的高效表达[J]. 生物工程学报,2016,32(10):1381−1394. [BAI R H, ZHANG Y B, WANG C D, et al. Gene optimization and efficient expression of Trichoderma reesei Cel5A in Pichia pastoris[J]. Chinese Journal of Biotechnology,2016,32(10):1381−1394.
    [36]
    XIONG Y, WU V W, LUBBE A, et al. A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism[J]. PLoS Genetics,2017,13(5):e1006737. doi: 10.1371/journal.pgen.1006737
  • Cited by

    Periodical cited type(10)

    1. 张珉畅,张艳新,郝佳楠,秦建春,林敏娟. 毛酸浆储藏病原菌分离鉴定和采后保鲜研究. 现代园艺. 2025(11): 1-5+11 .
    2. 杨小叶,王利强. 可食用材料制备液芯酸奶球及其性能研究. 包装与食品机械. 2024(05): 40-48 .
    3. 杨旭. 新型生物保鲜剂在食品微生物防控中的应用. 中外食品工业. 2024(18): 34-36 .
    4. 卢波斯,崔丹丹,沈宏. 海洋菌株Mitsuaria sp. SH-50产嗜热性壳聚糖酶CsnSH50的酶学性质表征及其应用. 现代食品科技. 2023(01): 50-58 .
    5. 吴可,李萌,李莹,马永生,范馨茹,赵前程. 海参贮藏保鲜机理及保鲜技术研究进展. 肉类研究. 2023(02): 46-53 .
    6. 杨絮,鲁淑彦,郭全友. 乳酸链球菌素对高水分烤虾贮藏中品质的影响. 食品工业科技. 2023(10): 330-335 . 本站查看
    7. 张玉婷,赵思佳,景正义,李腾飞. 壳聚糖-花椒精油保鲜膜对圣女果常温贮藏效果影响. 现代食品. 2023(07): 219-222 .
    8. 李仲堃,李姿萱,刘辰昊,刘春娥. 壳聚糖对无水保活单环刺螠品质的影响. 食品与机械. 2022(05): 127-132 .
    9. 裴诺,杜宇凡,孙洁,汪之和. 超声改性对壳聚糖/淀粉复合膜特性的影响. 食品与发酵工业. 2022(18): 88-94 .
    10. 王晓,李亚娜,范兰兰,李增辉,吴凯旋. 壳聚糖/番茄花青素/ε-聚赖氨酸复合膜的制备与表征. 武汉轻工大学学报. 2022(06): 15-20 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (304) PDF downloads (41) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return