DONG Shirong, XUAN Liqi, GUO Shanshan. Effect of Solvent Polarity on the Emulsifying Properties of the Flexible Zein[J]. Science and Technology of Food Industry, 2022, 43(17): 72−77. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110221.
Citation: DONG Shirong, XUAN Liqi, GUO Shanshan. Effect of Solvent Polarity on the Emulsifying Properties of the Flexible Zein[J]. Science and Technology of Food Industry, 2022, 43(17): 72−77. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110221.

Effect of Solvent Polarity on the Emulsifying Properties of the Flexible Zein

More Information
  • Received Date: November 18, 2021
  • Available Online: July 04, 2022
  • In order to explore the effect of solvent polarity on the emulsification of the flexible zein, scanning electron microscope, dynamic light scattering instrument, circular dichroic spectrometer were used to determine the morphology, particle size distribution, surface hydrophobicity, structure properties and emulsion properties of the flexible zein in different solvent environments (60%、70%、80%、90%、92% (v/v) aqueous ethanol solutions). The results showed that the aggregation morphology of the flexible zein was affected by the solvent polarity, and the particle size of the flexible zein aggregation was inversely proportional to the solvent polarity. The higher solvent polarity was, the better emulsifying activity of the flexible zein aggregation was, but the lower emulsifying stability was. When the ethanol concentration increased from 60% to 92%, the emulsion stability increased from 67.97% to 86.47%, the particle size of the emulsions decreased from 355.60 nm to 251.00 nm, and the zeta potential of the emulsion decreased from −40 mV to −42.85 mV. In addition, the lower the solvent polarity, the greater the α-helix structure and surface hydrophobicity of flexible zein. Different aggregations were formed from the flexible zein in different polarity solvents due to its different α-helix structure and surface hydrophobicity, and different emulsification properties were found from them. The results of this study provide a theoretical basis for broadening the application range of zein.
  • [1]
    SHUKLA R, CHERYAN M. Zein: The industrial protein from corn[J]. Industrial Crops and Products,2001,13(3):171−192. doi: 10.1016/S0926-6690(00)00064-9
    [2]
    孙翠霞, 宋镜如, 方亚鹏. 玉米醇溶蛋白-多糖纳米复合物的制备方法、结构表征及其功能特性研究进展[J]. 食品科学,2020,41(9):323−331. [SUN Cuixia, SONG Jingru, FANG Yapeng. Progress in preparation methods, structural characterization and functional properties of zein-polysaccharide nanocomposites[J]. Food Science,2020,41(9):323−331. doi: 10.7506/spkx1002-6630-20190411-153

    SUN Cuixia, SONG Jingru, FANG Yapeng. Progress in preparation methods, structural characterization and functional properties of zein-polysaccharide nanocomposites[J]. Food Science, 2020, 41(9): 323−331. doi: 10.7506/spkx1002-6630-20190411-153
    [3]
    YU X, AFREEN S, KONG Q, et al. Study on self-assembled morphology and structure regulation of α-zein in ethanol-water mixtures[J]. Langmuir,2020,36:11975−11984. doi: 10.1021/acs.langmuir.0c02143
    [4]
    WANG L, ZHANG Y. Heat-induced self-assembly of zein nanoparticles: Fabrication, stabilization and potential application as oral drug delivery[J]. Food Hydrocolloids,2019,90:403−412. doi: 10.1016/j.foodhyd.2018.12.040
    [5]
    MATSUSHIMA N, DANNO G I, TAKEZAWA H, et al. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering[J]. Biochimica et Biophysica Acta, 1997, 1339: 14−22.
    [6]
    WANG Y, PADUA G W. Nanoscale characterization of zein self-assembly[J]. Langmuir,2012,28(5):2429−2435. doi: 10.1021/la204204j
    [7]
    ZHONG Q, JIN M. Zein nanoparticles produced by liquid-liquid dispersion[J]. Food Hydrocolloid,2009,23:2380−2387. doi: 10.1016/j.foodhyd.2009.06.015
    [8]
    周浓, 余志良, 李承勇. 玉米醇溶蛋白-番石榴黄酮复合纳米颗粒的制备及其抗氧化活性[J]. 食品科学,2021,42(3):186−193. [ZHOU Nong, YU Zhiliang, LI Chengyong. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science,2021,42(3):186−193. doi: 10.7506/spkx1002-6630-20200225-270

    ZHOU Nong, YU Zhiliang, LI Chengyong. Fabrication and antioxidant activity of zein-guava flavonoid composite nanoparticles[J]. Food Science, 2021, 42(3): 186−193. doi: 10.7506/spkx1002-6630-20200225-270
    [9]
    张雪莹, 郭超凡, 陶飞, 等. 不同热处理方式对玉米醇溶蛋白特性的影响[J]. 食品科学,2018,39(13):112−118. [ZHANG Xueying, GUO Chaofan, TAO Fei, et al. Effect of different heat treatments on the properties of zein[J]. Food Science,2018,39(13):112−118. doi: 10.7506/spkx1002-6630-201813018

    ZHANG Xueying, GUO Chaofan, TAO Fei, et al. Effect of different heat treatments on the properties of zein[J]. Food Science, 2018, 39(13): 112−118. doi: 10.7506/spkx1002-6630-201813018
    [10]
    董世荣, 王丽, 高昂, 等. 脱酰胺对玉米醇溶蛋白乳化特性和结构的影响[J]. 食品与发酵工业,2020,46(17):67−72. [DONG Shirong, WANG Li, GAO Ang, et al. The effect of deamidation on the emulsifying properties and structure of zein[J]. Food and Fermentation Industries,2020,46(17):67−72. doi: 10.13995/j.cnki.11-1802/ts.023749

    DONG Shirong, WANG Li, GAO Ang, et al. The effect of deamidation on the emulsifying properties and structure of zein[J]. Food and Fermentation Industries, 2020, 46(17): 67−72. doi: 10.13995/j.cnki.11-1802/ts.023749
    [11]
    DAMODARAN S. Protein stabilization of emulsions and foams[J]. Journal of Food Science,2010,70:54−66.
    [12]
    TANG C H. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility[J]. Critical Reviews in Food Science and Nutrition,2017,57(12):2636−2679. doi: 10.1080/10408398.2015.1067594
    [13]
    HERRERO A M. Raman spectroscopy for monitoring protein structure in muscle food systems[J]. Critical Reviews in Food Science and Nutrition,2008,48(6):512−523. doi: 10.1080/10408390701537385
    [14]
    王健, 徐晔晔, 于洁, 等. 不同热处理大豆蛋白柔性与结构的关系[J]. 食品科学,2018,39(7):85−90. [WANG Jian, XU Yeye, YU Jie, et al. Effect of heat treatments on the relationship between flexibility and structure of soy protein[J]. Food Science,2018,39(7):85−90. doi: 10.7506/spkx1002-6630-201807013

    WANG Jian, XU Yeye, YU Jie, et al. Effect of heat treatments on the relationship between flexibility and structure of soy protein[J]. Food Science, 2018, 39(7): 85−90. doi: 10.7506/spkx1002-6630-201807013
    [15]
    江连洲, 朱颖, 王中江. 大豆蛋白结构柔性与界面功能的构效关系[J]. 中国食品学报,2020,20(1):284−289. [JIANG Lianzhou, ZHU Ying, WANG Zhongjiang. Structure-activity relationship between the flexibility structure of soybean protein and interface function[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(1):284−289. doi: 10.16429/j.1009-7848.2020.01.037

    JIANG Lianzhou, ZHU Ying, WANG Zhongjiang. Structure-activity relationship between the flexibility structure of soybean protein and interface function[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 284−289. doi: 10.16429/j.1009-7848.2020.01.037
    [16]
    LI R, CUI Q, WANG G, et al. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugate[J]. Food Hydrocolloids,2019,95:349−357. doi: 10.1016/j.foodhyd.2019.04.030
    [17]
    江连洲. 食用蛋白质柔性化加工技术概述[J]. 中国食品学报,2015,15(8):1−9. [JIANG Lianzhou. An introduction of the flexible processing technology of edible protein[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(8):1−9. doi: 10.16429/j.1009-7848.2015.08.001

    JIANG Lianzhou. An introduction of the flexible processing technology of edible protein[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(8): 1−9. doi: 10.16429/j.1009-7848.2015.08.001
    [18]
    YONG Y H, YAMAGUCHI S, GU Y S, et al. Effects of enzymatic deamidation by protein-glutaminase on structure and functional properties of α-zein[J]. Journal of Agricultural and Food Chemistry,2004,52:7094−7100. doi: 10.1021/jf040133u
    [19]
    DONG S R. XU H H, MA J Y, et al. Enhanced molecular flexibility of α-zein in different polar solvents[J]. Journal of Cereal Science,2020,96:103097. doi: 10.1016/j.jcs.2020.103097
    [20]
    HIROTA-NAKAOKA N, GOTO Y. Alcohol-induced denaturation of β-lactoglobulin: A close correlation to the alcohol-induced α-helix formation of melittin[J]. Bioorganic and Medicinal Chemistry,1999,7:67−73. doi: 10.1016/S0968-0896(98)00219-3
    [21]
    赖婵娟, 吴磊燕, 胡林芳, 等. 不同溶剂中玉米醇溶蛋白的聚集状态和结构性质[J]. 现代食品科技,2021,37(6):115−123. [LAI Chanjuan, WU Leiyan, HU Linfang, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology,2021,37(6):115−123. doi: 10.13982/j.mfst.1673-9078.2021.6.0258

    LAI Chanjuan, WU Leiyan, HU Linfang, et al. Aggregation state and structural properties of zein in different solvents[J]. Modern Food Science and Technology, 2021, 37(6): 115−123. doi: 10.13982/j.mfst.1673-9078.2021.6.0258
    [22]
    DONG S R, HAN Q, XU W, et al. Effect of solvent polarity on the formation of flexible zein nanoparticles and their environmental adaptability[J]. Journal of Cereal Science,2021,102:103340. doi: 10.1016/j.jcs.2021.103340
    [23]
    PEARCE K N, KINSELLA J E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry,1978,26(3):716−723. doi: 10.1021/jf60217a041
    [24]
    HAYAKAWA S, NAKAI S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Journal of Food Science,1985,50:486−491.
    [25]
    PARAMAN I, LAMSAL B P. Recovery and characterization of α-zein from corn fermentation coproducts[J]. Journal of Agricultural and Food Chemistry,2011,59(7):3071−3077. doi: 10.1021/jf104529c
    [26]
    YANG J T, WU C S, MARTINEZ H M. Calculation of protein conformation from circular dichroism[J]. Methods in Enzymology,1986,130(4):208−269.
    [27]
    KIM S, XU J. Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science,2008,47(1):1−5. doi: 10.1016/j.jcs.2007.08.004
    [28]
    赵颖颖, 李可, 王鹏, 等. 超声波处理对酪蛋白酸钠-大豆油预乳化液乳化稳定性的影响[J]. 食品科学,2017,38(3):75−80. [ZHAO Yingying, LI Ke, WANG Peng, et al. Effect of ultrasound treatment on the emulsion stability of pre-emulsified soybean oil with sodium caseinate[J]. Food Science,2017,38(3):75−80.

    ZHAO Yingying, LI Ke, WANG Peng, et al. Effect of ultrasound treatment on the emulsion stability of pre-emulsified soybean oil with sodium caseinate[J]. Food Science, 2017, 38(3): 75−80.
    [29]
    刘昊, 顾丰颖, 朱金锦, 等. 乳酸调控玉米醇溶蛋白基面团流变特性和微观结构的研究[J]. 食品工业科技,2021,42(18):81−88. [LIU Hao, GU Fengying, ZHU Jinjin, et al. Rheological properties and microstructure of zein dough under the control of lactic acid[J]. Science and Technology of Food Industry,2021,42(18):81−88. doi: 10.13386/j.issn1002-0306.2021010112

    LIU Hao, GU Fengying, ZHU Jinjin, et al. Rheological properties and microstructure of zein dough under the control of lactic acid[J]. Science and Technology of Food Industry, 2021, 42(18): 81−88. doi: 10.13386/j.issn1002-0306.2021010112
    [30]
    ZHU Y, FU S, WU C, et al. The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties[J]. Food Hydrocolloid,2020,103:105709. doi: 10.1016/j.foodhyd.2020.105709
  • Related Articles

    [1]BAI Xixi, HAN Chenggang, XU Ying, HAN Jingsong, CAO Chongjiang, CHENG Shujie. Research Progress of Dietary Intervention Strategies for Irritable Bowel Syndrome[J]. Science and Technology of Food Industry, 2022, 43(16): 421-431. DOI: 10.13386/j.issn1002-0306.2021080007
    [2]ZHAO Tong, WANG Xuan, WU Liming, YAN Sha, LU Huanxian, ZHAO Hongmu, XUE Xiaofeng. Research Progress of Fermented Bee-products[J]. Science and Technology of Food Industry, 2022, 43(14): 461-466. DOI: 10.13386/j.issn1002-0306.2021070251
    [3]WU Hong-yan, PENG Cheng-jun, DENG Hou-qin. Research Progress on Chemical Component of Eucommia Folium[J]. Science and Technology of Food Industry, 2019, 40(17): 360-364. DOI: 10.13386/j.issn1002-0306.2019.17.059
    [4]WANG Zi-xuan, XIE Jing, XUE Bin, SHAO Ze-huai, GAN Jian-hong, SUN Tao. Research Progress of Chitosan Food Packaging Film[J]. Science and Technology of Food Industry, 2019, 40(6): 303-307,311. DOI: 10.13386/j.issn1002-0306.2019.06.052
    [5]FANG Fang, WANG Feng-zhong. Research progress on the detection methods of flavonols in plants[J]. Science and Technology of Food Industry, 2018, 39(11): 327-332. DOI: 10.13386/j.issn1002-0306.2018.11.056
    [6]ZHAO Jing, GANG Jie. Research progress in bioaccumulation of trace elements in edible fungus[J]. Science and Technology of Food Industry, 2015, (17): 396-399. DOI: 10.13386/j.issn1002-0306.2015.17.074
    [7]ZHANG Ming- liang, JIANG Xian- zhang, WANG Can, HUANG Jian- zhong. Research progress in DHA production by microbes[J]. Science and Technology of Food Industry, 2014, (21): 395-400. DOI: 10.13386/j.issn1002-0306.2014.21.077
    [8]GAO Jian, MA Lu-shan, HU Jian-jun, FAN Tie-zhen, LIU Guo-ji. Research progress in the extraction method of pectin[J]. Science and Technology of Food Industry, 2014, (06): 368-372. DOI: 10.13386/j.issn1002-0306.2014.06.062
    [9]ZHANG Ke-ping, JIA Juan-juan, WU Jin-feng. Research progress in the mechanical properties of cereal[J]. Science and Technology of Food Industry, 2014, (02): 369-374. DOI: 10.13386/j.issn1002-0306.2014.02.066
    [10]YANG Ying, HUANG Li-jie. Research progress in preparation and application of modified starch[J]. Science and Technology of Food Industry, 2013, (20): 381-385. DOI: 10.13386/j.issn1002-0306.2013.20.086
  • Cited by

    Periodical cited type(26)

    1. 周新雨,王子欢,杨小平,王志新,贾利蓉,段飞霞. 天然着色剂与抗氧化剂对~(60)Co-γ射线辐照辣椒红油的协同护色作用研究. 中国调味品. 2025(01): 68-77 .
    2. 陈宇佳,邓朝军,张婷婷,王秀平,陈秀萍,赵加宁,马翠兰,蒋际谋. 基于图像识别的枇杷资源果肉褐变鉴定方法研究与应用. 果树学报. 2025(02): 288-299 .
    3. 张康逸,温青玉,刘燕,耿宁宁,张嫚,何梦影. 一种植物蛋白复合肽盐的工艺研究. 中国调味品. 2024(03): 137-144 .
    4. 张洪交,张存喜,王瑞,王可,乔倩. 基于图像处理和改进DenseNet网络的小黄鱼新鲜度识别. 南方水产科学. 2024(03): 133-142 .
    5. 唐一诺,章肖肖,宋文文,宋盈萱,高露,陈晓乐,郑振佳. 胭脂虫红色素口红制备工艺优化及品质分析. 中国食品添加剂. 2024(08): 139-147 .
    6. 刘恒言,陈秀金,臧鹏,董海胜,孙京超,赵伟,白玉冰,徐楠,张龙振,王雪晴,杜秉健,王耀,李兆周. 面包的品质变化及改良的研究进展. 食品与发酵工业. 2024(17): 394-404 .
    7. 骆冬莹,孙蕾,孙金威,梁文星,王苏宁,赵广生. 纳滤与闪蒸技术对新鲜牛乳浓缩效果的影响. 中国乳品工业. 2024(09): 75-80 .
    8. 杨芳,王逊城,贾洪锋,许程剑,袁海彬. 基于GC-IMS结合多元统计方法对不同品种植物油制备的辣椒油风味品质的比较. 现代食品科技. 2024(10): 338-350 .
    9. 鲍雨婷,陈琪,王灼琛. 低温油炸黄茶风味小麦脆片加工工艺优化及品质分析. 中国食品学报. 2024(11): 254-268 .
    10. 张莉,季国志,母智深. 不同豆类蛋白粉的属性和营养消化特性研究. 粮食与饲料工业. 2024(06): 19-23 .
    11. 董阳阳,阿衣古丽·阿力木,阿依古扎尔·木合塔尔江,冯作山. 响应面优化真空包装羊肉块加工工艺. 中国调味品. 2023(01): 128-133 .
    12. 冯子健,陈南,高浩祥,何强,曾维才. 茶多酚对酸奶发酵品质及抗氧化活性的影响. 食品工业科技. 2023(02): 143-151 . 本站查看
    13. 邬帅帆. 食品镀铝包装的阻光性能评价. 现代食品. 2023(05): 189-192 .
    14. 罗丽,付院生,陈万林,聂益晗,赵亚茹,王顺民. 鲜切莲藕超声-热处理护色工艺优化. 中国果菜. 2023(05): 17-21+28 .
    15. 黄昊,林韡,杨强,童国强,胡志平,陈双,徐岩. 陈酿白酒中黄色呈色强度快速表征方法的研究. 食品与发酵工业. 2023(10): 245-250 .
    16. 周弦,许蓉蓉,庄全典,高梦祥,江洪波. 生姜柠檬软糖的工艺优化. 食品工业. 2023(05): 91-95 .
    17. 唐悦,杨旭. 食品的视觉效果对消费者感知及购买行为影响研究. 现代商业. 2023(10): 3-6 .
    18. 孙雯,阎佳楠,来斌,王策,吴海涛. 负载褪黑素和枸杞粉的凝胶糖果的研制及特性研究. 食品工业科技. 2023(22): 201-209 . 本站查看
    19. 王博,胡晓妍,于芳珠,刘登勇. 基于机器视觉技术制作烤羊肉比色卡. 食品工业科技. 2022(03): 10-17 . 本站查看
    20. 巩雪. 超高压作用下扇贝闭壳肌色差变化探析. 包装学报. 2022(01): 70-80 .
    21. 魏甜甜,魏勃,王承,李凯,谢彩锋,杭方学. 黄冰糖低温浸渍茉莉花制备风味糖浆工艺优化. 食品工业科技. 2022(12): 181-187 . 本站查看
    22. 郭超男,年国芳,徐建宗,周建中. 25种新疆主栽辣椒品种品质分析. 食品安全质量检测学报. 2022(12): 4051-4058 .
    23. 邓家棋,陈嘉澍,黄桂颖,冯卫华,雷梦琳,白卫东,安可靖,余元善,王辉,戴卓文,杨启财,杨婉媛. 基于感官喜爱度排序的广式佛手柑凉果的品质分析. 农产品加工. 2022(12): 82-87 .
    24. 陈茜,张雪春,王振兴,何雪梅,孙健. 不同加工方式对香蕉片品质的影响. 南方农业学报. 2022(05): 1305-1315 .
    25. 吴昕怡,田浩,牛之瑞,桂敏,潘俊,王瀚墨,周继伟,朱志妍,刘秀嶶. 基于熵权的TOPSIS和聚类分析评价方法的发酵辣椒品种适用性研究. 食品安全质量检测学报. 2022(22): 7314-7322 .
    26. 张衍旭,邱智东,高英鑫,王野谌,董雪莲. 基于色差原理及指纹图谱对淡竹叶药材质量评价研究. 时珍国医国药. 2022(12): 3057-3061 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (179) PDF downloads (11) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return