ZHANG Tianyang, ZHANG Xuyan, WANG Danping, et al. The Effect of Polysaccharide of Poria cocos on Key Metabolites of Bifidobacterium BB-12[J]. Science and Technology of Food Industry, 2022, 43(11): 24−33. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110200.
Citation: ZHANG Tianyang, ZHANG Xuyan, WANG Danping, et al. The Effect of Polysaccharide of Poria cocos on Key Metabolites of Bifidobacterium BB-12[J]. Science and Technology of Food Industry, 2022, 43(11): 24−33. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110200.

The Effect of Polysaccharide of Poria cocos on Key Metabolites of Bifidobacterium BB-12

More Information
  • Received Date: November 16, 2021
  • Available Online: April 16, 2022
  • In order to explore the key metabolites of Bifidobacterium animalis spp. lactis BB-12 metabolizing polysaccharides of Poria cocos, a non-targeted metabolomics method based on liquid chromatography-mass spectrometry (LC-MS/MS) was used, and glucose was used as a control. The effects of polysaccharides of Poria cocos on key metabolites of Bifidobacterium animalis spp. lactis BB-12 were analyzed. The results showed that polysaccharides of Poria cocos could significantly promote the growth of Bifidobacterium BB-12. By using component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), some representative differential metabolites were screened out such as palmatine and ganolucidic acid, etc. There were 12 kinds of key differential metabolites, and 17 differential metabolic pathways were significantly enriched such as ABC transporters, linoleic acid metabolism, and galactose metabolism. These metabolites and pathways demonstrated that Bifidobacterium BB-12 exhibited better growth performance and prebiotic efficacy in the case of fermenting polysaccharides of Poria cocos. This experiment analyzed the metabolites produced by polysaccharides of Poria cocos from the level of small molecular metabolites which were metabolized by Bifidobacterium animalis spp. lactis BB-12. The results provide the theoretical basis and guidance for further study on the probiotic effect of polysaccharides of Poria cocos and Bifidobacterium animalis spp. lactis BB-12 in human bodies.
  • [1]
    王悦, 田双双, 刘晓谦, 等. 茯苓多糖的提取、结构及药理作用研究进展[J]. 世界中医药,2021,16(17):2548−2555. [WANG Y, TIAN S S, LIU X Q, et al. Research progress on extraction, structures and pharmacological activities of Poria cocos polysaccharides[J]. World Chinese Medicine,2021,16(17):2548−2555. doi: 10.3969/j.issn.1673-7202.2021.17.006
    [2]
    RÍOS J L. Chemical constituents and pharmacological properties of Poria cocos[J]. Planta Medica,2011,77(7):681−691. doi: 10.1055/s-0030-1270823
    [3]
    KHAN I, HUANG G, LI X, et al. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions[J]. Journal of Functional Foods,2018,41:191−201. doi: 10.1016/j.jff.2017.12.046
    [4]
    GAO S, LAI C K M, CHEUNG P C K. Nondigestible carbohydrates isolated from medicinal mushroom sclerotia as novel prebiotics[J]. International Journal of Medicinal Mushrooms,2009,11(1):1−8.
    [5]
    JIANG Y, FAN L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer[J]. Journal of Ethnopharmacology,2021,266:113456. doi: 10.1016/j.jep.2020.113456
    [6]
    SONG K Y, JIANG Z Y, YAN Q C, et al. Experimental study on the effect of Radix codonopsis and Poria on intestinal flora in mice[J]. The Chinese Journal of Clinical Pharmacology,2011,27(2):142−145.
    [7]
    JUNGERSEN M, WIND A, JOHANSEN E, et al. The science behind the probiotic strain Bifidobacterium animalis subsp. lactis BB-12®[J]. Microorganisms,2014,2(2):92−110. doi: 10.3390/microorganisms2020092
    [8]
    MÄTTÖ J, FONDÉN R, TOLVANEN T, et al. Intestinal survival and persistence of probiotic Lactobacillus and Bifidobacterium strains administered in triple-strain yoghurt[J]. International Dairy Journal,2006,16(10):1174−1180. doi: 10.1016/j.idairyj.2005.10.007
    [9]
    SAVARD P, LAMARCHE B, PARADIS M E, et al. Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults[J]. International Journal of Food Microbiology,2011,149(1):50−57. doi: 10.1016/j.ijfoodmicro.2010.12.026
    [10]
    CHOURAQUI J P, VAN EGROO L D, FICHOT M C. Acidified milk formula supplemented with Bifidobacterium lactis: Impact on infant diarrhea in residential care settings[J]. Journal of Pediatric Gastroenterology and Nutrition,2004,38(3):288−292. doi: 10.1097/00005176-200403000-00011
    [11]
    WANG K Y, LI S N, LIU C S, et al. Effects of ingesting Lactobacillus and Bifidobacterium containing yogurt in subjects with colonized Helicobacter pylori[J]. The American Journal of Clinical Nutrition,2004,80(3):737−741.
    [12]
    COMMANE D M, SHORTT C T, SILVI S, et al. Effects of fermentation products of pro-and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon[J]. Nutrition and Cancer,2005,51(1):102−109. doi: 10.1207/s15327914nc5101_14
    [13]
    MARTINS F S, SILVA A A, VIEIRA A T, et al. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties[J]. Archives of Microbiology,2009,191(8):623−630. doi: 10.1007/s00203-009-0491-x
    [14]
    ZWIETERING M H, JONGENBURGER I, ROMBOUTS F M, et al. Modeling of bacterial growth curve[J]. Applied and Environmental Microbiology,1990,56(6):1875−1881. doi: 10.1128/aem.56.6.1875-1881.1990
    [15]
    KATHLEEN M C TJØRVE, E TJØRVE. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family[J]. Plos One,2017,12(6):e0178691. doi: 10.1371/journal.pone.0178691
    [16]
    CHEN Z F, SHI Y F, LIU Y C, et al. TCM active ingredient oxoglaucine metal complexes: Crystal structure, cytotoxicity, and interaction with DNA[J]. Inorganic Chemistry,2012,51(4):1998−2009. doi: 10.1021/ic200443p
    [17]
    REMICHKOVA M, DIMITROVA P, PHILIPOV S, et al. Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine[J]. Fitoterapia,2009,80(7):411−414. doi: 10.1016/j.fitote.2009.05.016
    [18]
    CHEN T, CHEN H, ZHANG L, et al. Analysis of oxoglaucine in the treatment of breast cancer based on network pharmacology and bioinformatics[C]//E3S Web of Conferences. EDP Sciences, 2021, 271: 03078.
    [19]
    YANG B, XU Y, HU Y, et al. Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress[J]. Biomedicine & Pharmacotherapy,2016,84:845−852.
    [20]
    ZHANG H, ZHANG M, TAO Y, et al. Madecassic acid inhibits the mouse colon cancer growth by inducing apoptosis and immunomodulation[J]. J BUON,2014,19:372−376.
    [21]
    WON J H, SHIN J S, PARK H J, et al. Anti-inflammatory effects of madecassic acid via the suppression of NF-κB pathway in LPS-induced RAW 264.7 macrophage cells[J]. Planta Medica,2010,76(3):251−257. doi: 10.1055/s-0029-1186142
    [22]
    ZHANG L, LI J, MA F, et al. Synthesis and cytotoxicity evaluation of 13-n-Alkyl berberine and palmatine analogues as anticancer agents[J]. Molecules,2012,17(10):11294−11302. doi: 10.3390/molecules171011294
    [23]
    PATEL M B, MISHRA S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia[J]. Phytomedicine,2011,18(12):1045−1052. doi: 10.1016/j.phymed.2011.05.006
    [24]
    MA H, HU Y, ZOU Z, et al. Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from Rhizoma coptidis in HepG2 cell and diabetic KK-Ay mice[J]. Drug Dev Res,2016,77(4):163−170. doi: 10.1002/ddr.21302
    [25]
    PARK Y H, KIM J G, SHIN Y W, et al. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs[J]. Bioscience, Biotechnology, and Biochemistry,2008,72(2):595−600. doi: 10.1271/bbb.70581
    [26]
    TAKAYAMA F, TAKI K, NIWA T. Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis[J]. American Journal of Kidney Diseases,2003,41(3):S142−S145. doi: 10.1053/ajkd.2003.50104
    [27]
    CHULWON K, SEOK-GEUN L, YANG W M, et al. Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model[J]. Cancer Letters,2018,431:123−141. doi: 10.1016/j.canlet.2018.05.038
    [28]
    PARK S, BAZER F W, LIM W, et al. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation[J]. Journal of Cellular Biochemistry, 2018.
    [29]
    DUTRA J M, ESPITIA P, BATISTA R A . Formononetin: Biological effects and uses-A review[J]. Food Chemistry, 2021, 359(5):129975.
    [30]
    刘维, 虎虓真, 朱莉, 等. 灵芝三萜的研究与应用进展[J]. 食品科学,2019,40(5):309−315. [LIU W, HU X Z, ZHU L, et al. Recent progress in research and application of Ganoderma lucidum triterpenoids[J]. Food Science,2019,40(5):309−315. doi: 10.7506/spkx1002-6630-20180201-021
    [31]
    LIU L Y, WANG H Q, LIU C, et al. Triterpenoids of Ganoderma sessile and their hepatoprotective activities[J]. Natural Product Research and Development,2017,29(4):584.
    [32]
    KANG D, MUTAKIN M, LEVITA J. Computational study of triterpenoids of Ganoderma lucidum with aspartic protease enzymes for discovering HIV-1 and plasmepsin inhibitors[J]. International Journal of Chemistry,2015,7(1):62.
    [33]
    TAYLOR J R, LLOYD M, et al. The association of elevated plasma homocyst (e) ine with progression of symptomatic peripheral arterial disease[J]. Journal of Vascular Surgery,1991,13(1):128−136.
    [34]
    张丽杰, 高峰, 王春艳, 等. 双歧杆菌活菌降低老年人血脂的临床研究[J]. 中国卫生产业,2012,9(23):67. [ZHANG L J, GAO F, WANG C Y, et al. A clinical study on the effect of live bifidobacteria on reducing blood lipids in the elderly[J]. China Health Industry,2012,9(23):67.
    [35]
    GRIFFIN D S, SEGALL H J. Effects of the pyrrolizidine alkaloid senecionine and the alkenals trans-4-OH-hexenal and trans-2-hexenal on intracellular calcium compartmentation in isolated hepatocytes[J]. Biochemical Pharmacology,1989,38(3):391−397. doi: 10.1016/0006-2952(89)90377-8
    [36]
    KANEHISA M. KEGG for representation and analysis of molecular networks involving diseases and drugs[J]. Nucleic Acids Research,2010,38(Database issue):D355−D360.
    [37]
    COAKLEY M, ROSS R P, NORDGREN M, et al. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species[J]. Journal of Applied Microbiology,2003,94(1):138−145. doi: 10.1046/j.1365-2672.2003.01814.x
    [38]
    GORISSEN L, RAES K, WECKX S, et al. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species[J]. Applied Microbiology and Biotechnology,2010,87(6):2257−2266. doi: 10.1007/s00253-010-2713-1
    [39]
    RHEE Y K, HAN M J, CHOI E C, et al. Hypocholesterolemic activity of Bifidobacteria isolated from a healthy Korean[J]. Archives of Pharmacal Research,2002,25(5):681−684. doi: 10.1007/BF02976944
    [40]
    ISHII T, FURUOKA H, KAYA M, et al. Oral administration of probiotic Bifidobacterium breve improves facilitation of Hippocampal memory extinction via restoration of aberrant higher induction of neuropsin in an MPTP-induced mouse model of Parkinson’s disease[J]. Biomedicines,2021,9(2):167. doi: 10.3390/biomedicines9020167
    [41]
    KOBAYASHI Y, SUGAHARA H, SHIMADA K, et al. Therapeutic potential of Bifidobacteriumbreve strain A1 for preventing cognitive impairment in Alzheimer’s disease[J]. Scientific Reports,2017,7(1):1−10. doi: 10.1038/s41598-016-0028-x
  • Cited by

    Periodical cited type(8)

    1. 许欢怡,李泉岑,郑明锋,刘斌,吕峰,曾峰. 银耳多糖的结构、功能性及应用研究进展. 食品工业科技. 2024(04): 362-370 . 本站查看
    2. 马传贵,张志秀,冯杰,隋欣,贺宗毅. 食用菌多糖活性及应用研究. 食用菌. 2024(04): 1-5+9 .
    3. 张若妍,朱碧芬,尹浩,钟宇,王丹凤,邓云,章敏燕,张春蓉. 基于Stacking模型比较分析不同食用菌糖蛋白复合物的体外免疫活性. 中国食品添加剂. 2024(10): 90-99 .
    4. 向情儒,李文远,冯涛. 基于体外发酵的双孢菇膳食纤维及双孢菇粉对人体肠道菌群的调节作用. 食品工业科技. 2023(10): 130-137 . 本站查看
    5. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    6. 李锦弘,郑慧珍,陈慧,刘书来,顾赛麒,王芮,相兴伟. 牡蛎肽对RAW264.7巨噬细胞的免疫调节作用. 食品与发酵工业. 2023(22): 49-56 .
    7. 王文丽,张金玲,魏亚宁,桑雨梅,薛宏坤. 天然多糖提取、纯化及生物活性研究进展. 食品工业科技. 2022(22): 470-480 . 本站查看
    8. 李佳丹,詹柴,王凯,徐志豪. 城市微型食用菌工厂控制系统设计与应用. 南方农业. 2021(22): 21-24+29 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return