WU Junhao, WANG Jing, KHO Sethykun, et al. Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster[J]. Science and Technology of Food Industry, 2022, 43(17): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110057.
Citation: WU Junhao, WANG Jing, KHO Sethykun, et al. Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster[J]. Science and Technology of Food Industry, 2022, 43(17): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110057.

Research on Anti-aging Function and Mechanism of Pond Turtle Protein-derived Peptides on Drosophila melanogaster

More Information
  • Received Date: November 07, 2021
  • Available Online: June 25, 2022
  • Objective: To explore the anti-aging function and mechanism of pond turtle protein-derived peptides (PTPDP) on Drosophila melanogaster. Methods: PTPDP were obtained by enzymatic hydrolysis of turtle meat. Nutrients content, molecular weight distribution and amino acid composition of PTPDP were determined. D. melanogaster were fed with 0.2%, 0.4%, and 0.8% PTPDP. The activities of superoxide dismutase (SOD) and catalase (CAT), along with the content of malondialdehyde (MDA) were determined to analyze the anti-aging function of PTPDP. The anti-aging mechanism was explored by measuring the expression of antioxidant genes (Sod1, Sod2 and Cat) and lifespan-related genes (mth and Rpn11) in female D. melanogaster fed with 0.8% PTPDP. Results: The enzymatic hydrolysis products of turtle meat were mainly composed of small molecule peptides less than 1000 Da. PTPDP were rich in amino acids with antioxidant activity, such as glycine, glutamic acid and proline. In the survival experiment, the average lifespans of female and male D. melanogaster were significantly prolonged by 18.92% and 9.37% (P<0.01), respectively. In the antioxidant activity experiment, the SOD activity of female and male D. melanogaster increased significantly by 7.13% and 7.37% (P<0.05); the CAT activity of female and male D. melanogaster increased significantly by 42.14% and 84.66% (P<0.01); the MDA content of female and male D. melanogaster decreased significantly by 22.22% and 23.08% (P<0.05). In female D. melanogaster fed with 0.8% PTPDP, the expression of anti-oxidant related genes Sod1, Sod2 (P<0.05) and Cat (P<0.01) were significantly up-regulated, and genes (mth and Rpn11) related to lifespan also showed different degrees of regulation (P<0.01). Conclusion: PTPDP increase the antioxidant activity of D. melanogaster by affecting the expression of antioxidant genes and lifespan-related genes, thereby prolonging the lifespan of D. melanogaster. This mechanism implies that PTPDP has potential anti-aging effects.
  • [1]
    周佳雯, 靳建亮. 衰老机制及其干预研究进展[J]. 医学研究生学报,2021,34(5):524−529. [ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates,2021,34(5):524−529. doi: 10.16571/j.cnki.1008-8199.2021.05.016

    ZHOU J W, JIN J L. Research progress on aging mechanism and its intervention[J]. Journal of Medical Postgraduates, 2021, 34(5): 524-529. doi: 10.16571/j.cnki.1008-8199.2021.05.016
    [2]
    DATO S, CROCCO P, MIGLIORE N R, et al. Omics in a digital world: The role of bioinformatics in providing new insights into human aging[J]. Frontiers in Genetics,2021,12:689824. doi: 10.3389/fgene.2021.689824
    [3]
    卢春雪, 杨绍杰, 陶荟竹, 等. 衰老机制研究进展[J]. 中国老年学杂志,2018,38(1):248−250. [LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology,2018,38(1):248−250. doi: 10.3969/j.issn.1005-9202.2018.01.101

    LU C X, YANG S J, TAO H Z, et al. Research progress on aging mechanism[J]. Chinese Journal of Gerontology, 2018, 38(1): 248-250. doi: 10.3969/j.issn.1005-9202.2018.01.101
    [4]
    NANDI A, YAN L J, JANA C K, et al. Role of catalase in oxidative stress-and age-associated degenerative diseases[J]. Oxidative Medicine and Cellular Longevity,2019,2019:9613090.
    [5]
    CARUSO G, GODOS J, CASTELLANO S, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: A systematic review with meta-analysis[J]. Biomedicines,2021,9(3):253. doi: 10.3390/biomedicines9030253
    [6]
    SHEN C Y, JIANG J G, YANG L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: Pharmacological mechanisms and implications for drug discovery[J]. British Journal of Pharmacology,2017,174(11):1395−1425. doi: 10.1111/bph.13631
    [7]
    POMATTO L C, DAVIES K J. Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Biology and Medicine,2018,124:420−430. doi: 10.1016/j.freeradbiomed.2018.06.016
    [8]
    AGUILAR-TOALA J E, LICEAGA A M. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: Beyond chemical properties[J]. International Journal of Food Science and Technology,2020,56(5):2193−2204.
    [9]
    TADESSE S A, EMIRE S A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market[J]. Heliyon,2020,6(8):e04765. doi: 10.1016/j.heliyon.2020.e04765
    [10]
    ZENG W C, SUN Q, ZHANG W H, et al. Antioxidant activity in vivo and biological safety evaluation of a novel antioxidant peptide from bovine hair hydrolysates[J]. Process Biochemistry,2017,56:193−198. doi: 10.1016/j.procbio.2017.02.022
    [11]
    CHEN S Y, YANG Q, CHEN X, et al. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster[J]. Food & Function,2020,11(1):524−533.
    [12]
    DING Y L, KO S C, MOON S H, et al. Protective effects of novel antioxidant peptide purified from alcalase hydrolysate of velvet antler against oxidative stress in chang liver cells in vitro and in a zebrafish model in vivo[J]. International Journal of Molecular Sciences,2019,20(20):5187. doi: 10.3390/ijms20205187
    [13]
    TONOLO F, FOLDA A, CESARO L, et al. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway[J]. Journal of Functional Foods,2020,64:103696. doi: 10.1016/j.jff.2019.103696
    [14]
    石扬, 张永进, 赖年悦, 等. 中华草龟肉抗肿瘤活性肽的分离纯化及鉴定研究[J]. 现代食品科技,2018,34(5):24−31. [SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology,2018,34(5):24−31.

    SHI Y, ZHANG Y J, LAI N Y, et al. Isolation, purification and identification of anti-tumor bioactive peptides from Chinemys reevesii[J]. Modern Food Science and Technology, 2018, 34(5): 24-31.
    [15]
    杨昭, 曾琳琦, 凌叶婷, 等. 蛋白酶种类对龟肉酶解液品质的影响[J]. 食品工业,2021,42(3):188−191. [YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry,2021,42(3):188−191.

    YANG Z, ZENG L Q, LING Y T, et al. Effect of protease species on the quality of enzymatic hydrolysate of turtle meat[J]. The Food Industry, 2021, 42(3): 188-191.
    [16]
    段丽娟, 范慧君, 邢婕, 等. 龟龄集延缓果蝇衰老的作用研究[J]. 山西医科大学学报,2021,52(3):317−321. [DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University,2021,52(3):317−321.

    DUAN L J, FAN H J, XING J, et al. Study on anti-aging effects of Guilingji in Drosophila melanogaster[J]. Journal of Shanxi Medical University, 2021, 52(3): 317-321.
    [17]
    闫明亮, 周玉枝, 李明花, 等. 基于1H-NMR代谢组学的黄芩醇提物延长果蝇寿命研究[J]. 中草药,2016,47(10):1714−1722. [YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs,2016,47(10):1714−1722. doi: 10.7501/j.issn.0253-2670.2016.10.015

    YAN M L, ZHOU Y Z, LI M H, et al. Metabonomic study of alcohol extract from Scutellariae Radix in prolonginglifespan of Drosophila melanogaster based on 1H-NMR[J]. Chinese Traditional and Herbal Drugs, 2016, 47(10): 1714-1722. doi: 10.7501/j.issn.0253-2670.2016.10.015
    [18]
    张永进, 石扬, 赖年悦, 等. 中华草龟抗肿瘤生物活性肽提取工艺的初步研究[J]. 肉类工业,2017,7:28−33. [ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii[J]. Meat Industry,2017,7:28−33. doi: 10.3969/j.issn.1008-5467.2017.04.008

    ZHANG Y J, SHI Y, LAI N Y, et al. Preliminary study on extraction technology of antitumor bioactive peptides of Chinemys reevesii. [J]. Meat Industry, 2017, 7: 28-33. doi: 10.3969/j.issn.1008-5467.2017.04.008
    [19]
    史晋源, 钟浩, 王倩倩, 等. 甲鱼肽对果蝇寿命及其抗氧化活性的影响[J]. 食品工业科技,2021,42(11):321−327. [SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2021,42(11):321−327.

    SHI J Y, ZHONG H, WANG Q Q, et al. Effect of soft-shelled turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2021, 42(11): 321-327.
    [20]
    王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.

    WANG Y H, REN H H, WANG J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2018, 39(5): 313-318.
    [21]
    XIN X X, CHEN Y, CHEN D, et al. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila[J]. Journal of Agricultural and Food Chemistry,2016,64(29):5803−5812. doi: 10.1021/acs.jafc.6b00514
    [22]
    张明, 何超, 邵颖, 等. 蛹虫草多糖对果蝇寿命及抗氧化活性的影响[J]. 食品科技,2016,41(11):179−183. [ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology,2016,41(11):179−183.

    ZHANG M, HE C, SHAO Y, et al. Effect of polysaccharides from fruiting body of Cordyceps militaries on lifespan and antioxidant activity in Drosophila melanogaster[J]. Food Science and Technology, 2016, 41(11): 179-183.
    [23]
    张晓寒, 赵江, 韩英, 等. 根皮素延缓雌性果蝇的衰老作用[J]. 现代食品科技,2020,36(3):9−16, 166. [ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology,2020,36(3):9−16, 166.

    ZHANG X H, ZHAO J, HAN Y, et al. Anti-aging effects of phloretin on female Drosophila melanogaster[J]. Modern Food Science and Technology, 2020, 36(3): 9-16, 166.
    [24]
    余楠楠, 陈琛. 生物活性肽功能及制备技术研究进展[J]. 中国酿造,2018,37(9):17−21. [YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing,2018,37(9):17−21. doi: 10.11882/j.issn.0254-5071.2018.09.004

    YU N N, CHEN C. Research progress of bioactive peptide function and preparation technology[J]. China Brewing, 2018, 37(9): 17-21. doi: 10.11882/j.issn.0254-5071.2018.09.004
    [25]
    HU X M, WANG Y M, ZHAO Y Q, et al. Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: Purification, identification, and cytoprotective function on HepG2 cells damage by H2O2[J]. Marine Drugs,2020,18(3):153. doi: 10.3390/md18030153
    [26]
    申彩红. 海参肽的酶法制备及其抗氧化、抗疲劳活性研究[D]. 厦门: 华侨大学, 2015

    SHEN C H. Study on the enzymatic preparation of sea cucumber peptide and its antioxidant and anti-fatigue activities[D]. Xiamen: Huaqiao University, 2015.
    [27]
    赵翊君. 鲈鱼鱼肉抗氧化肽的分离鉴定及其对HepG2细胞氧化损伤的保护作用研究[D]. 广州: 华南理工大学, 2018

    ZHAO Y J. Separation and characterization of antioxidant peptides from bass muscle and their protective effects against oxidative damage in HepG2 cells[D]. Guangzhou: South China University of Technology, 2018.
    [28]
    杜瑞平, 张兴夫, 高民, 等. 甘氨酸的免疫调节作用及其分子机制[J]. 动物营养学报,2015,27(3):663−670. [DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition,2015,27(3):663−670. doi: 10.3969/j.issn.1006-267x.2015.03.001

    DU R P, ZHANG X F, GAO M, et al. Immunomodulatory effect and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition, 2015, 27(3): 663-670. doi: 10.3969/j.issn.1006-267x.2015.03.001
    [29]
    GARCIA E J, CAIN M E. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations[J]. European Journal of Neuroscience,2021,54(7):6382−6396. doi: 10.1111/ejn.15441
    [30]
    CHEN C L, HSU S C, ANN D K. Arginine signaling and cancer metabolism[J]. Cancers,2021,13(14):3541. doi: 10.3390/cancers13143541
    [31]
    SADEGHI M, TENBERG V, MUNZBERG S, et al. Phase equilibria of l-valine/l-leucine solid solutions[J]. Journal of Molecular Liquids,2021,340:117315. doi: 10.1016/j.molliq.2021.117315
    [32]
    秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.

    QIN Y Y, WANG Y J, LI Y, et al. Effects of astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry, 2020, 41(2): 288-291.
    [33]
    ZHANG J J, LIU X, PAN J H, et al. Anti-aging effect of brown black wolfberry on Drosophila melanogaster and d-galactose-induced aging mice[J]. Journal of Functional Foods,2020,65:103724. doi: 10.1016/j.jff.2019.103724
    [34]
    张婉迎, 赵文学, 尹翌秋, 等. 人参水提物对果蝇抗衰老的作用机制[J]. 吉林农业大学学报,2018,40(5):557−562. [ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University,2018,40(5):557−562.

    ZHANG W Y, ZHAO W X, YIN Y Q, et al. Mechanism of anti-aging activity of water extract of ginseng in Drosophila melanogaster[J]. Journal of Jilin Agricultural University, 2018, 40(5): 557-562.
    [35]
    WONG D, HU X Q, TAO N P, et al. Effect and mechanism of pyridoxamine on the lipid peroxidation and stability of polyunsaturated fatty acids in beef patties[J]. Journal of the Science of Food and Agriculture,2016,96(10):3418−3423. doi: 10.1002/jsfa.7522
    [36]
    张静静, 刘暄, 赵琦, 等. 褐变黑枸杞对紫外照射损伤果蝇寿命及抗氧化能力的影响[J]. 中国食品添加剂,2020,31(1):53−58. [ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives,2020,31(1):53−58.

    ZHANG J J, LIU X, ZHAO Q, et al. Brown black wolfberry on the life-span of UV damaged Drosophila melanogaster and its anti-oxidation activities[J]. China Food Additives, 2020, 31(1): 53-58.
    [37]
    DORAN M L, KNEE J M, WANG N, et al. Metabolomic analysis of oxidative stress: Superoxide dismutase mutation and paraquat induced stress in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2017,113:323−334. doi: 10.1016/j.freeradbiomed.2017.10.011
    [38]
    PANDEY A, KHATOON R, SAINI S, et al. Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster[J]. Free Radical Biology and Medicine,2015,83:54−65. doi: 10.1016/j.freeradbiomed.2015.02.025
    [39]
    TANG R, CHEN X Y, DANG T T, et al. Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster[J]. Food & Function,2019,10(7):4231−4241.
  • Cited by

    Periodical cited type(10)

    1. 王睿敏,郑冬艳,但霞,李仁芳,曾庆坤,吴凤娇,黄丽,李玲. 具有潜在降压功能益生乳酸菌的筛选及其特性的研究. 食品科技. 2025(01): 1-8 .
    2. 马新淼,魏敏敏,张左利,张轶腾,牛希跃,李雨鑫,李婕,许倩. 新疆哈萨克酸马奶中功能性乳酸菌株的筛选、鉴定及功能评价. 食品安全质量检测学报. 2024(07): 151-159 .
    3. 刘怡雯,达久阿达,张敏,任秀梅,蒋绍平,田维,吴建平. 牦牛酸乳中乳酸菌的研究进展. 乳品与人类. 2024(04): 37-41 .
    4. 雷善钰,江华明,李艳,梁锦鹏,张小平,赵珂,向泉桔,辜运富. 川西高原传统发酵牦牛乳奶酪中乳酸菌多样性及优良乳酸菌的筛选. 应用与环境生物学报. 2023(01): 27-34 .
    5. 夏亚男,冯晨晨,韩荣,双全,额尔敦巴雅尔. 高产γ-氨基丁酸乳酸菌的筛选、鉴定及其益生特性研究. 食品科技. 2023(02): 14-20 .
    6. 葛善赢,张海涛,王士佳,李佳宸,吴学智,张佰清. 脉冲强光诱变选育高产乳酸植物乳杆菌及其益生特性研究. 中国酿造. 2023(10): 59-64 .
    7. 陈显玲,莫小群,杨琴,曾婷,苏龙. 植物乳杆菌XL-02发酵产γ-氨基丁酸条件的优化. 山东化工. 2022(06): 10-14 .
    8. 马莉,刘慧燕,方海田,辛世华,李一鸣,贺捷群. 产γ-氨基丁酸乳酸菌的分离鉴定及其发酵条件优化. 中国酿造. 2022(07): 94-100 .
    9. 莫小群,王雅,陈显玲,农秀丽,卢丽婷,杨福川,苏龙. 富含γ-氨基丁酸非乳益生菌香蕉发酵饮料工艺研究. 中国果菜. 2022(11): 20-26+31 .
    10. 王玲芝,白雪,蒋咏梅. 正交试验法优化灵芝菌丝体γ-氨基丁酸提取工艺. 福建农业科技. 2022(10): 44-48 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return